IL-15 has substantial potential as an immunotherapeutic agent for augmenting immune responses. However, the activity of IL-15 is mediated by a unique mechanism in which the cytokine is transpresented by cell-bound high-affinity IL-15Rα to target cells expressing the IL-15Rβ and the common γ-chain. Thus, the efficacy of administered IL-15 alone may be limited by the availability of free IL-15Rα. We now show that administration of soluble IL-15/IL-15Rα complexes greatly enhanced IL-15 half-life and bioavailability in vivo. Treatment of mice with this complex, but not with IL-15 alone, resulted in robust proliferation of memory CD8 T cells, NK cells, and NK T cells. The activity of the complex required IL-15Rβ, but not IL-15Rα, expression by the responding cells and was IL-7-independent. Interestingly, IL-15/IL-15Rα immunotherapy also caused naive CD8 T cell activation and development into effector cells and long-term memory T cells. Lastly, complexed IL-15, as compared with IL-15 alone, dramatically reduced tumor burden in a model of B16 melanoma. These findings hold significant importance for the use of IL-15 as a potential adjuvant/therapeutic and inducer of homeostatic proliferation, without the necessity for prior immunodepletion.
T cell activation by dendritic cells (DCs) is critical to the initiation of adaptive immune responses and protection against pathogens. Here, we demonstrate that a specialized DC subset in Peyer's patches (PPs) mediates the rapid activation of pathogen specific T cells. This DC subset is characterized by the expression of the chemokine receptor CCR6 and is found only in PPs. CCR6(+) DCs were recruited into the dome regions of PPs upon invasion of the follicle associated epithelium (FAE) by an enteric pathogen and were responsible for the rapid local activation of pathogen-specific T cells. CCR6-deficient DCs were unable to respond to bacterial invasion of PPs and failed to initiate T cell activation, resulting in reduced defense against oral infection. Thus, CCR6-dependent regulation of DCs is responsible for localized T cell dependent defense against entero-invasive pathogens.
Both CD4+ T cell help and IL-2 have been postulated to "program" activated CD8 + T cells for memory cell development. However, the linkage between these two signals has not been well elucidated. Here we have studied effector and memory CD8 + T cell differentiation following infection with three pathogens (Listeria monocytogenes, vesicular stomatitis virus, and vaccinia virus) in the absence of both CD4 + T cells and IL-2 signaling. We found that expression of CD25 on antigen-specific CD8 + T cells peaked 3-4 days after initial priming and was dependent on CD4 + T cell help, likely through a CD28:CD80/86 mediated pathway. CD4 + T cell or CD25-deficiency led to normal early effector CD8 + T cell differentiation, but a subsequent lack of accumulation of CD8 + T cells resulting in overall decreased memory cell generation. Interestingly, in both primary and recall responses KLRG1 high CD127 low short-lived effector cells were drastically diminished in the absence of IL-2 signaling, although memory precursors remained intact. In contrast to previous reports, upon secondary antigen encounter CD25-deficient CD8 + T cells were capable of undergoing robust expansion, but short-lived effector development was again impaired. Thus, these results demonstrated that CD4 + T cell help and IL-2 signaling were linked via CD25 up-regulation, which controls the expansion and differentiation of antigen-specific effector CD8 + T cells, rather than "programming" memory cell traits.infection | memory
Originally shown to promote the growth and activation of B cells, thymic stromal lymphopoietin (TSLP) is now known to have wide-ranging impacts on both hematopoietic and non-hematopoietic cell lineages, including dendritic cells (DCs), basophils, eosinophils, mast cells, CD4+, CD8+ and natural killer (NK) T cells, B cells and epithelial cells. While TSLP's role in the promotion of TH2 responses has been extensively studied in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems, including the blockade of TH1/TH17 responses and the promotion of cancer and autoimmunity. This review will highlight recent advances in the understanding of TSLP signal transduction, as well as the role of TSLP in allergy, autoimmunity and cancer. Importantly, these insights into TSLP's multifaceted roles could potentially allow for novel therapeutic manipulations of these disorders.
Dendritic cells (DCs) are a critical player in immune responses, linking innate and adaptive immunity. We show here that DC-specific deletion of the STAT5 was not critical for development, but was required for type-2, but not type-1, allergic responses in both the skin and lung. Loss of STAT5 in DCs led to the inability to respond to thymic stromal lymphopoietin (TSLP). STAT5 was required for TSLP-dependent DC activation, including upregulation of costimulatory molecules and chemokine production. Furthermore, type-2 responses in mice with DC-specific loss of STAT5resembled those seen in TSLPR-deficient mice. These results show that the TSLP- STAT5 axis in DCs is a critical component for the promotion of type-2 immunity at barrier surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.