The purpose of this study was to examine the propulsion asymmetries of wheelchair athletes while sprinting on an instrumented, dual-roller ergometer system. Eighteen experienced wheelchair rugby players (8 low point (LP) (class ≤1.5) and 10 high point (HP) (class ≥2.0)) performed a 15-second sprint in their sports wheelchair on the instrumented ergometer. Asymmetry was defined as the difference in distance and power output (PO) between left and right sides when the best side reached 28 m. Propulsion techniques were quantified based on torque and velocity data. HP players covered an average 3 m further than the LP players (P = .002) and achieved faster sprint times than LP players (6.95 ± 0.89 vs 8.03 ± 0.68 seconds, P = .005) and at the time the best player finished (5.96 seconds). Higher peak POs (667 ± 108 vs 357 ± 78 W, P = .0001) and greater peak speeds that were also evident were for HP players (4.80 ± 0.71 vs 4.09 ± 0.45 m/s, P = .011). Greater asymmetries were found in HP players for distance (1.86 ± 1.43 vs 0.70 ± 0.65 m, P = .016), absolute peak PO (P = .049), and speed (0.35 ± 0.25 vs 0.11 ± 0.10 m/s, P = .009). Although HP players had faster sprint times over 28 m (achieved by a higher PO), high standard deviations show the heterogeneity within the two groups (eg, some LP players were better than HP players). Quantification of asymmetries is important not only for classifiers but also for sports practitioners wishing to improve performance as they could be addressed through training and/or wheelchair configuration.
These findings suggest that the sympathetic nervous system plays an important regulatory role in the circulating IL-6 response to exercise and has implications for the metabolic and inflammatory responses to exercise in individuals with injuries above T6.
The purpose of this investigation was to examine the use of subjective rating of perceived exertion (RPE) as a tool to self-regulate the intensity of wheelchair propulsive exercise in individuals with tetraplegia. Eight motor complete tetraplegic (C5/6 and below; ASIA Impairment Scale = A) participants completed a submaximal incremental exercise test followed by a graded exercise test to exhaustion to determine peak oxygen uptake (VO₂(peak)) on a wheelchair ergometer. On a separate day, a 20-min exercise bout was completed at an individualised imposed power output (PO) equating to 70 % of VO₂(peak). On a third occasion, participants were instructed to maintain a workload equivalent to the average RPE for the 20-min imposed condition. VO₂(peak), heart rate (HR) and PO were measured at 1-min intervals and blood lactate concentration [BLa(-)] was measured at 0, 10 and 20 min. No differences (P > 0.17) were found between mean VO₂(peak), % VO₂(peak), HR, % HR(peak), [BLa(-)], velocity or PO between the imposed and RPE-regulated trials. No significant (P > 0.05) time-by-trial interaction was present for VO₂(peak) data. A significant interaction (P < 0.001) for the PO data represented a trend for an increase in PO from 10 min to the end of exercise during the RPE-regulated condition. However, post hoc analysis revealed none of the differences in PO across time were significant (P > 0.05). In conclusion, these findings suggest that RPE can be an effective tool for self-regulating 20 min of wheelchair propulsion in a group of trained participants with tetraplegia who are experienced in wheelchair propulsion.
Aim: The quantification and longitudinal monitoring of athlete training load (TL) provides a scientific explanation for changes in performance and helps manage injury/illness risk. Therefore, accurate and reliable monitoring tools are essential for the optimization of athletic performance. The aim of the present study was to establish the relationship between measures of internal [heart rate (HR) and session RPE (sRPE)] and external TL specific to wheelchair rugby (WR).Methods: Fourteen international WR athletes (age = 29 ± 7 years; body mass = 58.9 ± 10.9 kg) were monitored during 18 training sessions over a 3 month period during the competitive phase of the season. Activity profiles were collected during each training session using a radio-frequency based indoor tracking system (ITS). External TL was quantified by total distance (m) covered as well as time spent and distance covered in a range of classification-specific arbitrary speed zones. Banister's TRIMP, Edwards's summated HR zone (SHRZ), and Lucia's TRIMP methods were used to quantify physiological internal TL. sRPE was calculated as the product of session duration multiplied by perceived exertion using the Borg CR10 scale. Relationships between external and internal TL were examined using correlation coefficients and the 90% confidence intervals (90% CI).Results: sRPE (r = 0.59) and all HR-based (r > 0.80) methods showed large and very large relationships with the total distance covered during training sessions, respectively. Large and very large correlations (r = 0.56 − 0.82) were also observed between all measures of internal TL and times spent and distances covered in low and moderate intensity speed zones. HR-based methods showed very large relationships with time (r = 0.71−0.75) and distance (r = 0.70−0.73) in the very high speed zone and a large relationship with the number of high intensity activities (HIA) performed (r = 0.56−0.62). Weaker relationships (r = 0.32−0.35) were observed between sRPE and all measures of high intensity activity. A large variation of individual correlation co-efficient was observed between sRPE and all external TL measures.Conclusion: The current findings suggest that sRPE and HR-based internal TL measures provide a valid tool for quantifying volume of external TL during WR training but may underestimate HIA. It is recommended that both internal and external TL measures are employed for the monitoring of overall TL during court-based training in elite WR athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.