Mammalian cells primarily repair DSBs by nonhomologous end joining (NHEJ). To assess the ability of human cells to mediate end joining of complex DSBs such as those produced by chemicals, oxidative events, or high- and low-LET radiation, we employed an in vitro double-strand break repair assay using plasmid DNA linearized by these various agents. We found that human HeLa cell extracts support end joining of complex DSBs and form multimeric plasmid products from substrates produced by the radiomimetic drug bleomycin, 60Co gamma rays, and the effects of 125I decay in DNA. End joining was found to be dependent on the type of DSB-damaging agent, and it decreased as the cytotoxicity of the DSB-inducing agent increased. In addition to the inhibitory effects of DSB end-group structures on repair, NHEJ was found to be strongly inhibited by lesions proximal to DSB ends. The initial repair rate for complex non-ligatable bleomycin-induced DSBs was sixfold less than that of similarly configured (blunt-ended) but less complex (ligatable) restriction enzyme-induced DSBs. Repair of DSBs produced by gamma rays was 15-fold less efficient than repair of restriction enzyme-induced DSBs. Repair of the DSBs produced by 125I was near the lower limit of detection in our assay and was at least twofold lower than that of gamma-ray-induced DSBs. In addition, DSB ends produced by 125I were shown to be blocked by 3'-nucleotide fragments: the removal of these by E. coli endonuclease IV permitted ligation.
A recombinant human AP endonuclease, HAP1, was constructed and characterized with respect to its ability to recognize and act upon a model double-stranded 39-mer oligodeoxyribonucleotide substrate containing a strand break site with 3'-phosphoglycolate and 5'-phosphate end-group chemistries. This oligodeoxyribonucleotide substrate exactly duplicates the chemistry and configuration of a major DNA lesion produced by ionizing radiation. HAP1 was found to recognize the strand break, and catalyze the release of the 3'-phosphoglycolate as free phosphoglycolic acid. The enzyme had a Vmax of 0.1 fmole/min/pg of HAP1 protein, and a Km of 0.05 microM for the 3'-phosphoglycolate strand break lesion. The mechanism of catalysis was hydrolysis of the phosphate ester bond between the 3'-phosphoglycolate moiety and the 3'-carbon of the adjacent dGMP moiety within the oligonucleotide. The resulting DNA contained a 3'-hydroxyl which supported nucleotide incorporation by E. coli DNA polymerase I large fragment. AP endonucleolytic activity of HAP1 was examined using an analogous double-stranded 39-mer oligodeoxyribonucleotide substrate, in which the strand break site was replaced by an apyrimidinic site. The Vmax and Km for the AP endonuclease reaction were 68 fmole/min/pg of HAP1 protein and 0.23 microM, respectively.
Despite recent epidemiological evidences linking radiation exposure and a number of human ailments including cancer, mechanistic understanding of how radiation inflicts long-term changes in cerebral cortex, which regulates important neuronal functions, remains obscure. The current study dissects molecular events relevant to pathology in cerebral cortex of 6 to 8 weeks old female C57BL/6J mice two and twelve months after exposure to a γ radiation dose (2 Gy) commonly employed in fractionated radiotherapy. For a comparative study, effects of 1.6 Gy heavy ion56Fe radiation on cerebral cortex were also investigated, which has implications for space exploration. Radiation exposure was associated with increased chronic oxidative stress, oxidative DNA damage, lipid peroxidation, and apoptosis. These results when considered with decreased cortical thickness, activation of cell-cycle arrest pathway, and inhibition of DNA double strand break repair factors led us to conclude to our knowledge for the first time that radiation caused aging-like pathology in cerebral cortical cells and changes after heavy ion radiation were more pronounced than γ radiation.
Radiation lethality is largely attributed to radiation-induced DNA double-strand breaks (DSBs). A range of structural complexity is predicted for radiation-induced DSBs. However, this lesion has never been analyzed in isolation at the molecular level. To address this problem, we have created authentic site-specific radiationinduced DSBs in plasmid DNA by triplex-forming oligonucleotidetargeted 125 I decay. No significant difference in DSB yield was observed after irradiation in the presence or absence of the radical scavenger DMSO, suggesting that DSB formation is a result of the direct effect of the radiation. A restriction fragment terminated by the DSB was isolated and probed with the Escherichia coli DNA repair enzyme endonuclease IV (endo IV), which recognizes apurinic͞apyrimidinic (AP) sites. Enzymatic probing demonstrated clustering of AP sites within 10 bases of the 125 I-targeted base in the DNA duplex. Our results suggest scavengeable radicals may not play a large role in the generation of AP sites associated with DSB formation, because at least 30% of all fragments have endo IV-sensitive sites, regardless of irradiation conditions. An internal control fragment recovered from the 125 I linearized plasmid did not exhibit endo IV sensitivity in excess of that observed for a similar fragment recovered from an undamaged plasmid. Thus, AP site clustering proximal to the DSB resulted from the 125 I decays responsible for DSB formation and was not due to untargeted background irradiation.DNA damage clustering ͉ multiply damaged site ͉ enzymatic probing ͉ high linear energy transfer ͉ triplex-forming oligonucliotide R adiation causes a myriad of cellular and molecular effects, but the effect by which it produces cell death is thought to be largely a function of DNA damage (1, 2). Although ionizing radiation causes a variety of lesions in DNA, double-strand breaks (DSB) are implicated as being principally responsible for radiation lethality (3-10). Therefore, insights into the molecular mechanisms of radiation lethality depend on understanding radiation-induced DSB structural characteristics and the aspects of these structures that lead to cytotoxicity.Typically, as ionizing radiation linear energy transfer (LET) increases, the cytotoxicity of the radiation increases. Cells exposed to low-LET radiation typically exhibit a linear-quadratic survival curve with an initial shoulder that is characteristic of a cell's radiation sensitivity and DSB repair capacity. In contrast, cells exposed to high-LET radiation present a nearly linear survival curve (11). The lack of a shoulder in high-LET survival curves is thought to reflect high structural complexity and decreased repairability of the DSBs produced (4,(12)(13)(14)(15). In contrast, low-LET radiation (e.g., x-rays and ␥-rays) is predicted to produce DSBs with a range of structural complexity, of which only a small subset with high structural complexity may actually be responsible for the majority of cytotoxic effects (4, 10, 13, 16). Thus, knowledge of DSB structu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.