We have reconstructed the quantum state of optical pulses containing single photons using the method of phase-randomized pulsed optical homodyne tomography. The single-photon Fock state 1> was prepared using conditional measurements on photon pairs born in the process of parametric down-conversion. A probability distribution of the phase-averaged electric field amplitudes with a strongly non-Gaussian shape is obtained with the total detection efficiency of (55+/-1)%. The angle-averaged Wigner function reconstructed from this distribution shows a strong dip reaching classically impossible negative values around the origin of the phase space.
In this Letter we present the controlled coupling of a single nitrogen vacancy center to a plasmonic structure. With the help of an atomic force microscope, a single nanodiamond containing a single nitrogen vacancy center and two gold nanospheres are assembled step-by-step. We show that both the excitation rate and the radiative decay rate of the color center are enhanced by about 1 order of magnitude, while the single photon character of the emission is maintained. Hot spots between diamond and gold nanoparticles provide an efficient near-field coupling, despite the mismatch in size and shape. Our approach provides hybrid systems as important building blocks for novel nanophotonic light sources in advanced plasmonic devices stable even at room temperature.
In this Letter we report the plasmon-enhanced upconversion in single NaYF(4) nanocrystals codoped with Yb(3+)/Er(3+). Single nanocrystals and gold nanospheres are investigated and assembled in a combined confocal and atomic force microscope setup. The nanocrystals show strong upconversion emission in the green and red under excitation with a continuous wave laser in the near-infrared at 973 nm. By the use of the atomic force microscope, we couple single nanocrystals with gold spheres (30 and 60 nm in diameter) to obtain enhanced upconversion emission. An overall enhancement factor of 3.8 is reached. A comparison of time-resolved measurements on the bare nanocrystal and the coupled nanocrystal-gold sphere systems unveil that faster excitation as well as faster emission occurs in the nanocrystals.
We propose and demonstrate a hybrid cavity system in which metal nanoparticles are evanescently coupled to a dielectric photonic crystal cavity using a nanoassembly method. While the metal constituents lead to strongly localized fields, optical feedback is provided by the surrounding photonic crystal structure. The combined effect of plasmonic field enhancement and high quality factor (Q approximately 900) opens new routes for the control of light-matter interaction at the nanoscale.
Spectral diffusion is a result of random spectral jumps of a narrow line as a
result of a fluctuating environment. It is an important issue in spectroscopy,
because the observed spectral broadening prevents access to the intrinsic line
properties. However, its characteristic parameters provide local information on
the environment of a light emitter embedded in a solid matrix, or moving within
a fluid, leading to numerous applications in physics and biology. We present a
new experimental technique for measuring spectral diffusion based on photon
correlations within a spectral line. Autocorrelation on half of the line and
cross-correlation between the two halves give a quantitative value of the
spectral diffusion time, with a resolution only limited by the correlation
set-up. We have measured spectral diffusion of the photoluminescence of a
single light emitter with a time resolution of 90 ps, exceeding by four orders
of magnitude the best resolution reported to date
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.