Purpose: Automated delineation of structures and organs is a key step in medical imaging. However, due to the large number and diversity of structures and the large variety of segmentation algorithms, a consensus is lacking as to which automated segmentation method works best for certain applications. Segmentation challenges are a good approach for unbiased evaluation and comparison of segmentation algorithms. Methods: In this work, we describe and present the results of the Head and Neck Auto-Segmentation Challenge 2015, a satellite event at the Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015 conference. Six teams participated in a challenge to segment nine structures in the head and neck region of CT images: brainstem, mandible, chiasm, bilateral optic nerves, bilateral parotid glands, and bilateral submandibular glands. Results: This paper presents the quantitative results of this challenge using multiple established error metrics and a well-defined ranking system. The strengths and weaknesses of the different auto-segmentation approaches are analyzed and discussed. Conclusions: The Head and Neck Auto-Segmentation Challenge 2015 was a good opportunity to assess the current state-of-the-art in segmentation of organs at risk for radiotherapy treatment. Participating teams had the possibility to compare their approaches to other methods under unbiased and standardized circumstances. The results demonstrate a clear tendency toward more general purpose and fewer structure-specific segmentation algorithms.
No abstract
Abstract. Footwear impressions are one of the most frequently secured types of evidence at crime scenes. For the investigation of crime series they are among the major investigative notes. In this paper, we introduce an unsupervised footwear retrieval algorithm that is able to cope with unconstrained noise conditions and is invariant to rigid transformations. A main challenge for the automated impression analysis is the separation of the actual shoe sole information from the structured background noise. We approach this issue by the analysis of periodic patterns. Given unconstrained noise conditions, the redundancy within periodic patterns makes them the most reliable information source in the image. In this work, we present four main contributions: First, we robustly measure local periodicity by fitting a periodic pattern model to the image. Second, based on the model, we normalize the orientation of the image and compute the window size for a local Fourier transformation. In this way, we avoid distortions of the frequency spectrum through other structures or boundary artefacts. Third, we segment the pattern through robust point-wise classification, making use of the property that the amplitudes of the frequency spectrum are constant for each position in a periodic pattern. Finally, the similarity between footwear impressions is measured by comparing the Fourier representations of the periodic patterns. We demonstrate robustness against severe noise distortions as well as rigid transformations on a database with real crime scene impressions. Moreover, we make our database available to the public, thus enabling standardized benchmarking for the first time.
Dimensional analysis (DA) is a fundamental method in the engineering and physical sciences for analytically reducing the number of experimental variables affecting a given phenomenon prior to experimentation. Two powerful advantages associated with the method relative to standard design of experiment (DOE) approaches are (a) a priori dimension reduction and (b) scalability of results. The latter advantage permits the experimenter to effectively extrapolate results to similar experimental systems of differing scale. Unfortunately, DA experiments are underused because very few statisticians are familiar with them. In this article, we first provide an overview of DA and give basic recommendations for designing DA experiments. Next, we consider various risks associated with the DA approach, the foremost among them is the possibility that the analyst might omit a key explanatory variable, leading to an incorrect DA model. When this happens, the DA model will fail and experimentation will be largely wasted. To protect against this possibility, we develop a robust-DA design approach that combines the best of the standard empirical DOE approach with our suggested design strategy. Results are illustrated with some straightforward applications of DA. A Matlab code for computing robust-DA designs is available as supplementary material online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.