Long‐distance migration has evolved in many organisms moving through different media and using various modes of locomotion and transport. Migration continues to evolve or become suppressed as shown by ongoing dynamic and rapid changes of migration patterns. This great evolutionary flexibility may seem surprising for such a complex attribute as migration. Even if migration in most cases has evolved basically as a strategy to maximise fitness in a seasonal environment, its occurrence and extent depend on a multitude of factors. We give a brief overview of different factors (e.g. physical, geographical, historical, ecological) likely to facilitate and/or constrain the evolution of long‐distance migration and discuss how they are likely to affect migration. The basic driving forces for migration are ecological and biogeographic factors like seasonality, spatiotemporal distributions of resources, habitats, predation and competition. The benefit of increased resource availability will be balanced by costs associated with the migratory process in terms of time (incl. losses of prior occupancy advantages), energy and mortality (incl. increased exposure to parasites). Furthermore, migration requires genetic instructions (allowing substantial room for learning in some of the traits) about timing, duration and distance of migration as well as about behavioural and physiological adaptations (fuelling, organ flexibility, locomotion, use of environmental transport etc) and control of orientation and navigation. To what degree these costs and requirements put constraints on migration often depends on body size according to different scaling relationships. From this exposé it is clear that research on migration warrants a multitude of techniques and approaches for a complete as possible understanding of a very complex evolutionary syndrome. In addition, we also present examples of migratory distances in a variety of taxons. In recent years new techniques, especially satellite radio telemetry, provide new information of unprecedented accuracy about journeys of individual animals, allowing re‐evaluation of migration, locomotion and navigation theories.
It has been suggested that birds migrate faster in spring than in autumn because of competition for arrival order at breeding grounds and environmental factors such as increased daylight. Investigating spring and autumn migration performances is important for understanding ecological and evolutionary constraints in the timing and speed of migration. We compiled measurements from tracking studies and found a consistent predominance of cases showing higher speeds and shorter durations during spring compared to autumn, in terms of flight speeds (airspeed, ground speed, daily travel speed), stopover duration, and total speed and duration of migration. Seasonal differences in flight speeds were generally smaller than those in stopover durations and total speed/duration of migration, indicating that rates of foraging and fuel deposition were more important than flight speed in accounting for differences in overall migration performance. Still, the seasonal differences in flight speeds provide important support for time selection in spring migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.