Mps1 is a dual specificity protein kinase that is essential for the bipolar attachment of chromosomes to the mitotic spindle and for maintaining the spindle assembly checkpoint until all chromosomes are properly attached. Mps1 is expressed at high levels during mitosis and is abundantly expressed in cancer cells. Disruption of Mps1 function induces aneuploidy and cell death. We report the identification of MPI-0479605, a potent and selective ATP competitive inhibitor of Mps1. Cells treated with MPI-0479605 undergo aberrant mitosis, resulting in aneuploidy and formation of micronuclei. In cells with wild-type p53, this promotes the induction of a postmitotic checkpoint characterized by the ATM-and RAD3-related-dependent activation of the p53-p21 pathway. In both wild-type and p53 mutant cells lines, there is a growth arrest and inhibition of DNA synthesis. Subsequently, cells undergo mitotic catastrophe and/or an apoptotic response. In xenograft models, MPI-0479605 inhibits tumor growth, suggesting that drugs targeting Mps1 may have utility as novel cancer therapeutics. Mol Cancer Ther; 10(12); 2267-75. Ó2011 AACR.
Our previous studies have demonstrated the in-vitro and in-vivo targeting of a generation-5 (G5) dendrimer-based multifunctional conjugate, which used folic acid (FA) as the targeting agent and methotrexate (MTX) as the chemotherapeutic drug. For the synthesized G5-FA-MTX nanodevice conjugate to be clinically applicable as a cancer therapeutic drug, it is important that the compound elicits cytotoxicity specifically and consistently. The aim of this work was to evaluate four independently synthesized batches of G5-FA-MTX conjugates for their cytotoxic potential and specificity. For determination of specificity, we have used a unique 'coculture' assay in which FA receptor-positive and FA receptor-negative cells were cultured together and have examined the preferential killing of the former. The results of our study show the batch-to-batch consistency and specificity of the G5-FA-MTX nanodevice in the preferential killing of FA receptor-positive cells. The coculture assay shows the consistency of the four different G5-FA-MTX conjugate lots in the specific killing of targeted cells. Further in-vivo studies are, however, necessary to prove the clinical potential of this targeted therapeutic nanodevice.
Unprecedented access to the biology of single cells is now feasible, enabled by recent technological advancements that allow us to manipulate and measure sparse samples and achieve a new level of resolution in space and time. This review focuses on advances in tools to study single cells for specific areas of biology. We examine both mature and nascent techniques to study single cells at the genomics, transcriptomics, and proteomics level. In addition, we provide an overview of tools that are well suited for following biological responses to defined perturbations with single-cell resolution. Techniques to analyze and manipulate single cells through soluble and chemical ligands, the microenvironment, and cell-cell interactions are provided. For each of these topics, we highlight the biological motivation, applications, methods, recent advances, and opportunities for improvement. The toolbox presented in this review can function as a starting point for the design of single-cell experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.