Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnitude in power consumption and four orders of magnitude in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. Driven by more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf implements a set of rules and practices to ensure comparability across systems with wildly differing architectures. In this paper, we present the method and design principles of the initial MLPerf Inference release. The first call for submissions garnered more than 600 inference-performance measurements from 14 organizations, representing over 30 systems that show a range of capabilities.
Computing plays an indispensable role in scientific research. Presently, researchers in science have different problems, needs, and beliefs about computation than professional programmers. In order to accelerate the progress of science, computer scientists must understand these problems, needs, and beliefs. To this end, this paper presents a survey of scientists from diverse disciplines, practicing computational science at a doctoral-granting university with very high research activity. The survey covers many things, among them, prevalent programming practices within this scientific community, the importance of computational power in different fields, use of tools to enhance performance and software productivity, computational resources leveraged, and prevalence of parallel computation. The results reveal several patterns that suggest interesting avenues to bridge the gap between scientific researchers and programming tools developers.
The performance benefits of GPU parallelism can be enormous, but unlocking this performance potential is challenging. The applicability and performance of GPU parallelizations is limited by the complexities of CPU-GPU communication. To address these communications problems, this paper presents the first fully automatic system for managing and optimizing CPU-GPU communcation. This system, called the CPU-GPU Communication Manager (CGCM), consists of a run-time library and a set of compiler transformations that work together to manage and optimize CPU-GPU communication without depending on the strength of static compile-time analyses or on programmer-supplied annotations. CGCM eases manual GPU parallelizations and improves the applicability and performance of automatic GPU parallelizations. For 24 programs, CGCM-enabled automatic GPU parallelization yields a whole program geomean speedup of 5.36x over the best sequential CPU-only execution.
GPUs are flexible parallel processors capable of accelerating real applications. To exploit them, programmers must ensure a consistent program state between the CPU and GPU memories by managing data. Manually managing data is tedious and error-prone. In prior work on automatic CPU-GPU data management, alias analysis quality limits performance, and type-inference quality limits applicability. This paper presents Dynamically Managed Data (DyManD), the first automatic system to manage complex and recursive data-structures without static analyses. By replacing static analyses with a dynamic run-time system, DyManD overcomes the performance limitations of alias analysis and enables management for complex and recursive data-structures. DyManD-enabled GPU parallelization matches the performance of prior work equipped with perfectly precise alias analysis for 27 programs and demonstrates improved applicability on programs not previously managed automatically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.