The pharmacological activities in bioactive plant extracts play an increasing role in sustainable resources for valorization and biomedical applications. Bioactive phytochemicals, including natural compounds, secondary metabolites and their derivatives, have attracted significant attention for use in both medicinal products and cosmetic products. Our review highlights the pharmacological mode-of-action and current biomedical applications of key bioactive compounds applied as anti-inflammatory, bactericidal with antibiotics effects, and pain relief purposes in controlled clinical studies or preclinical studies. In this systematic review, the availability of bioactive compounds from several salt-tolerant plant species, mainly focusing on the three promising species Aster tripolium, Crithmum maritimum and Salicornia europaea, are summarized and discussed. All three of them have been widely used in natural folk medicines and are now in the focus for future nutraceutical and pharmacological applications.
Background: The aetiologies and pathogeneses of the joint diseases rheumatoid arthritis (RA) and spondyloarthritis (SpA) are still not fully elucidated. To increase our understanding of the molecular pathogenesis, we analysed the protein composition of synovial fluid (SF) from rheumatoid arthritis (RA) and spondyloarthritis (SpA) patients. Methods: Fifty-six synovial fluid samples (RA, n = 32; SpA, n = 24) were digested with trypsin, and the resulting peptides were separated by liquid chromatography and analysed by tandem mass spectrometry. Additionally, the concentration of cell-free DNA (cfDNA) in the synovial fluid was measured, and plasma C-reactive protein (CRP) was determined. Results: Three hundred thirty five proteins were identified within the SF. The more abundant proteins seen in RA SF were inflammatory proteins, including proteins originating from neutrophil granulocytes, while SpA SF had less inflammatory proteins and a higher concentration of haptoglobin. The concentration of cell-free DNA in the SF increased together with proteins that may have originated from neutrophils. Plasma CRP levels in both RA and SpA, correlated to other acute phase reactants. Conclusions: The proteomic results underline that neutrophils are central in the RA pathology but not in SpA, and even though inhibitors of neutrophils (migration, proteinase inhibitors) were present in the SF it was not sufficient to interrupt the disease process.
Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here we demonstrate that the NRF2 anti-oxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a potent cellular anti-viral program, which potently inhibits replication of SARS-CoV2 across cell lines. The anti-viral program extended to inhibit the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, induction of NRF2 by 4-OI and DMF limited host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2. One Sentence Summary: NRF2 agonists 4-octyl-itaconate (4-OI) and dimethyl fumarate inhibited SARS-CoV2 replication and virus-induced inflammatory responses, as well as replication of other human pathogenic viruses.
The majority of patients diagnosed with rheumatoid arthritis (RA) have developed autoantibodies against neoepitopes in proteins that have undergone post-translational modification, e.g., citrullination or carbamylation. There is growing evidence of their molecular relevance and their potential utility to improve diagnosis, patient stratification, and prognosis for precision medicine. Autoantibodies reacting to native proteins may also have a role in RA pathogenesis, however, their reactivity patterns remain much less studied. We hypothesized that a high-density protein array technology could shed light onto the normal and disease-related autoantibodies produced in healthy and RA patient subgroups. In an exploratory study, we investigated the global reactivity of autoantibodies in plasma pools from 15 anti-cyclic citrullinated peptide (CCP)-positive and 10 anti-CCP-negative RA patients and 10 healthy donors against more than 1600 native and unmodified human proteins using a high-density protein array. A total of 102 proteins recognized by IgG autoantibodies were identified, hereof 86 were recognized by antibodies from CCP-positive RA patients and 76 from anti-CCP-negative RA patients, but not by antibodies from healthy donors. Twenty-four of the identified autoantigens have previously been identified in synovial fluid. Multiple human proteins in their native conformation are recognized by autoantibodies from anti-CCP-positive as well as anti-CCP-negative RA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.