When a self-adaptive system detects that its adaptation goals may be compromised, it needs to determine how to adapt to ensure its goals. To that end, the system can analyze the possible options for adaptation, i.e., the adaptation space, and pick the best option that achieves the goals. Such analysis can be resource and time consuming, in particular when rigorous analysis methods are applied. Hence, exhaustively analyzing all options may be infeasible for systems with large adaptation spaces. This problem is further complicated as the adaptation options typically include uncertainty parameters that can only be resolved at runtime. In this paper, we present a machine learning approach to tackle this problem. This approach enhances the traditional MAPE-K feedback loop with a learning module that selects subsets of adaptation options from a large adaptation space to support the analyzer with performing efficient analysis. We instantiate the approach for two concrete learning techniques, classification and regression, and evaluate the approaches for two instances of an Internet of Things application for smart environment monitoring with different sizes of adaptation spaces. The evaluation shows that both learning approaches reduce the adaptation space significantly without noticeable effect on realizing the adaptation goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.