Neuromorphic vision sensors present unique advantages over their frame based counterparts. However, unsupervised learning of efficient visual representations from their asynchronous output is still a challenge, requiring a rethinking of traditional image and video processing methods.Here we present a network of leaky integrate and fire neurons that learns representations similar to those of simple and complex cells in the primary visual cortex of mammals from the input of two event-based vision sensors. Through the combination of spike timing-dependent plasticity and homeostatic mechanisms, the network learns visual feature detectors for orientation, disparity, and motion in a fully unsupervised fashion. We validate our approach on a mobile robotic platform.
Neuromorphic vision sensors exhibit several advantages compared to conventional frame-based cameras including low latencies, high dynamic range, and low data rates. However, how efficient visual representations can be learned from the output of such sensors in an unsupervised fashion is still an open problem. Here we present a spiking neural network that learns spatio-temporal receptive fields in an unsupervised way from the output of a neuromorphic event-based vision sensor. Learning relies on the combination of spike timing-dependent plasticity with different synaptic delays, the homeostatic regulations of synaptic weights and firing thresholds, and fast inhibition among neurons to decorrelate their responses. Our network develops biologically plausible spatio-temporal receptive fields when trained on real world input and is suited for implementation on neuromorphic hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.