We used two measures to compare the effectiveness of 52 conservation criteria in achieving conservation targets for forest types. The first measure was efficiency. Although widely used, efficiency assumes no loss or reduction of biodiversity features before conservation is implemented. This is invalid in many situations. Often, it is more realistic to assume gradual implementation accompanied by incremental, predictable reduction and loss of biodiversity features. We simulated future landscapes resulting from the annual interplay of loss and conservation of forest types. We then based our second measure, retention, on how well criteria scheduled conservation action to prevent targets being compromised. The simulations partly support predictions about the best criteria for scheduling implementation with continuing biodiversity loss. Retention was weakly related or unrelated to efficiency across 52 criteria. Although retention values were sensitive to changes in targets and rates of conservation and forest loss, one criterion consistently produced highest retention values.
Conservation actions could be more efficient if there is congruence among taxa in the distribution of species. Patterns in the geographical distribution of five taxa were used to identify nationally important regions for conservation in Canada. Two measures of surrogacy were significantly and positively correlated among taxa, and conservation areas selected for one taxon represented other taxa significantly better than random selections. However, few large protected areas exist in the sites of highest conservation value in southern Canada; these regions are therefore a priority for future conservation regard. By focusing this effort on threatened and endangered species, which are a national priority in Canada, most other species could also benefit.
Three-dimensional interdigitated electrodes (IDEs) have been investigated as sensing elements for biosensors. Electric field and current density were simulated in the vicinity of these electrodes as a function of the electrode width, gap, and height to determine the optimum geometry. Both the height and the gap between the electrodes were found to have significant effect on the magnitude and distribution of the electric field and current density near the electrode surface, while the width of the electrodes was found to have a smaller effect on field strength and current density. IDEs were fabricated based on these simulations and their performance tested by detecting C-reactive protein (CRP), a stress-related protein and an important biomarker for inflammation, cardiovascular disease risk indicator, and postsurgical recuperation. CRP-specific antibodies were immobilized on the electrode surface and the formation of an immunocomplex (IC) with CRP was monitored. Electrochemical impedance spectroscopy (EIS) was employed as the detection technique. EIS data at various concentrations (1 pg/mL to 10 microg/mL) of CRP spiked in buffer or diluted human serum was collected and fitted into an equivalent electrical circuit model. Change in resistance was found to be the parameter most sensitive to change in CRP concentration. The sensor response was linear from 0.1 ng/mL to 1 microg/mL in both buffer and 5% human serum samples. The CRP samples were validated using a commercially available ELISA for CRP detection. Hence, the viability of IDEs and EIS for the detection of serum biomarkers was established without using labeled or probe molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.