High activity of histone deacetylases (HDACs) causes epigenetic alterations associated with malignant cell behaviour. Consequently, HDAC inhibitors have entered late-phase clinical trials as new antineoplastic drugs. However, little is known about expression and function of specific HDAC isoforms in human tumours including prostate cancer. We investigated the expression of class I HDACs in 192 prostate carcinomas by immunohistochemistry and correlated our findings to clinicopathological parameters including follow-up data. Class I HDAC isoforms were strongly expressed in the majority of the cases (HDAC1: 69.8%, HDAC2: 74%, HDAC3: 94.8%). High rates of HDAC1 and HDAC2 expression were significantly associated with tumour dedifferentiation. Strong expression of all HDACs was accompanied by enhanced tumour cell proliferation. In addition, HDAC2 was an independent prognostic marker in our prostate cancer cohort. In conclusion, we showed that the known effects of HDACs on differentiation and proliferation of cancer cells observed in vitro can also be confirmed in vivo. The class I HDAC isoforms 1, 2 and 3 are differentially expressed in prostate cancer, which might be important for upcoming studies on HDAC inhibitors in this tumour entity. Also, the highly significant prognostic value of HDAC2 clearly deserves further study.
Purpose: Recently, several studies reported a strong functional link betweenhistone deacetylases (HDAC) and the development of tumors of the large intestine. However, despite the importance of these molecules, comparably little is known on expressionpatterns and functions of specific HDAC isoforms in colorectal cancer. Experimental Design: We characterized class I HDAC isoform expression patterns in a cohort of 140 colorectal carcinomas by immunohistochemistry. In addition, effects of HDAC inhibition by valproic acid and suberoylanilide hydroxamic acid, and specific HDAC isoform knockdown by short interfering RNA, were investigated in a cell culture model. Results: We found class I HDACs highly expressed in a subset of colorectal carcinomas with positivity for HDAC1 in 36.4%, HDAC2 in 57.9%, and HDAC3 in 72.9% of cases. Expression was significantly enhanced in strongly proliferating (P = 0.002), dedifferentiated (P = 0.022) tumors. High HDAC expression levels implicated significantly reduced patient survival (P = 0.001), with HDAC2 expression being an independent survival prognosticator (hazard ratio, 2.6; P = 0.03). Short interfering RNA^based inhibition of HDAC1 and HDAC2 but not HDAC3 suppressed growth of colon cancer cells in vitro, although to a lesser extent than chemical HDAC inhibitors did. Conclusions: The strong prognostic impact of HDAC isoforms in colorectal cancer, the interactions of HDACs with tumor cell proliferation and differentiation in vivo, and our finding that HDACs are differentially expressed in colorectal tumors suggest that the evaluation of HDAC expression in clinical trials for HDAC inhibitors might help to identify a patient subgroup who will exceptionally profit from such a treatment.
Advanced second generation inhibitors of histone deacetylases (HDAC) are currently used in clinical development. This study aimed at comparing the pharmacological properties of selected second generation HDAC inhibitors with the hydroxamate and benzamide head group, namely SAHA, LAQ824/LBH589, CI994, MS275 and MGCD0103. In biochemical assays using recombinant HDAC1, 3, 6 and 8 isoenzymes, SAHA and LAQ824/LBH589 behave as quite unselective HDAC inhibitors. In contrast, the benzamides CI994, MS275 and MGCD0103 are more selective, potent inhibitors of at least HDAC1 and HDAC3. All HDAC inhibitors induce histone H3 hyperacetylation, correlating with inhibition of proliferation, induction of cell differentiation and apoptosis. A broad cytotoxicity is seen across cell lines from different tumor entities with LAQ824/LBH589 being the most potent agents. The apoptosis inducing activity is evident in arrested and proliferating RKO colon cancer cells with inducible, heterologous p21 waf1 expression, indicative for a cell-cycle independent mode-of-action. Differentiation of MDA-MB468 breast cancer cells is induced by benzamide and hydroxamate analogs. The reversibility of drug action was evaluated by pulse treatment of A549 lung cancer cells. Whereas paclitaxel induced irreversible cell cycle alterations already after 6 hr treatment, HDAC inhibitor action was retarded and irreversible after >16 hr treatment. Interestingly, pulse treatment was equally effective as continous treatment. Finally, the efficacy of LAQ824, SAHA and MS275 in A549 nude mice xenografts was comparable to that of paclitaxel at well tolerated doses. We conclude that despite a different HDAC isoenzyme inhibition profile, hydroxamate and benzamide analogs as studied display similar cellular profiles. ' 2007 Wiley-Liss, Inc.Key words: HDAC inhibition; hydroxamate and benzamide head group; isoenzyme selectivity; protein hyperacetylation Posttranslational modification by reversible acetylation of lysine residues in histone proteins and their putative role in RNA synthesis was first described in 1964 by Allfrey et al.1 Since this landmark article, the natural antifungal antibiotic Trichostatin A (TSA) was found to act by inhibition of mammalian histone deacetylases (HDAC).2 Subsequently, the first human HDAC named HD1 (syn. HDAC1), a homolog of yeast transcriptional regulator Rpd3, was isolated.3 Since then, enormous progress was made in understanding reversible protein acetylation in general and histone modifications in particular.4,5 Chromatin condensation and transcriptional activity is regulated by acetylation of N-terminal lysine residues in core histone proteins H3 and H4 by histone acetyltransferases (HATs) and deacetylation by HDACs. HDACs are components of transcriptional silencing complexes as first described for the mRpd3/N-CoR /mSin3 complex.6 Up to now, 11 different HDAC isoenzymes belonging to the class I (HDAC 1, 2, 3, 8), class II (HDAC 4-7, 9, 10) and class IV families (HDAC11) have been described. 7 HDAC class III enzymes, also named Sirtuin...
BackgroundEnhanced activity of histone deacetylases (HDAC) is associated with more aggressive tumour behaviour and tumour progression in various solid tumours. The over-expression of these proteins and their known functions in malignant neoplasms has led to the development of HDAC inhibitors (HDI) as new anti-neoplastic drugs. However, little is known about HDAC expression in renal cell cancer.MethodsWe investigated the expression of HDAC 1, 2 and 3 in 106 renal cell carcinomas and corresponding normal renal tissue by immunohistochemistry on tissue micro arrays and correlated expression data with clinico-pathological parameters including patient survival.ResultsAlmost 60% of renal cell carcinomas expressed the HDAC isoforms 1 and 2. In contrast, HDAC 3 was only detected in 13% of all renal tumours, with particular low expression rates in the clear cell subtype. HDAC 3 was significantly higher expressed in pT1/2 tumours in comparison to pT3/4 tumours. Expression of class I HDAC isoforms correlated with each other and with the proliferative activity of the tumours. We found no prognostic value of the expression of any of the HDAC isoforms in this tumour entity.ConclusionClass I HDAC isoforms 1 and 2 are highly expressed in renal cell cancer, while HDAC 3 shows low, histology dependent expression rates. These unexpected differences in the expression patterns suggests alternative regulatory mechanisms of class I HDACs in renal cell cancer and should be taken into account when trials with isoform selective HDI are being planned. Whether HDAC expression in renal cancers is predictive of responsiveness for HDI will have to be tested in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.