Haematopoietic stem cells (HSCs) are the founding cells of the adult haematopoietic system, born during ontogeny from a specialized subset of endothelium, the haemogenic endothelium (HE) via an endothelial-to-haematopoietic transition (EHT). Although recently imaged in real time, the underlying mechanism of EHT is still poorly understood. We have generated a Runx1 + 23 enhancer-reporter transgenic mouse (23GFP) for the prospective isolation of HE throughout embryonic development. Here we perform functional analysis of over 1,800 and transcriptional analysis of 268 single 23GFP+ HE cells to explore the onset of EHT at the single-cell level. We show that initiation of the haematopoietic programme occurs in cells still embedded in the endothelial layer, and is accompanied by a previously unrecognized early loss of endothelial potential before HSCs emerge. Our data therefore provide important insights on the timeline of early haematopoietic commitment.
Differentiation of pluripotent embryonic stem (ES) cells through multipotent neural stem (NS) cells into differentiated neurons is accompanied by wholesale changes in transcriptional programs. One factor that is present at all three stages and a key to neuronal differentiation is the RE1-silencing transcription factor (REST/NRSF). Here, we have used a novel chromatin immunoprecipitation-based cloning strategy (SACHI) to identify 89 REST target genes in ES cells, embryonic hippocampal NS cells and mature hippocampus. The gene products are involved in all aspects of neuronal function, especially neuronal differentiation, axonal growth, vesicular transport and release, and ionic conductance. Most target genes are silent or expressed at low levels in ES and NS cells, but are expressed at much higher levels in hippocampus. These data indicate that the REST regulon is specific to each developmental stage and support the notion that REST plays distinct roles in regulating gene expression in pluripotent ES cells, multipotent NS cells, and mature neurons.
Although many genes are known to be critical for early hematopoiesis in the embryo, it remains unclear whether distinct regulatory pathways exist to control hematopoietic specification versus hematopoietic stem cell (HSC) emergence and function. Due to their interaction with key regulators of hematopoietic commitment, particular interest has focused on the role of the ETS family of transcription factors; of these, ERG is predicted to play an important role in the initiation of hematopoiesis, yet we do not know if or when ERG is required. Using in vitro and in vivo models of hematopoiesis and HSC development, we provide strong evidence that ERG is at the center of a distinct regulatory program that is not required for hematopoietic specification or differentiation but is critical for HSC maintenance during embryonic development. We show that, from the fetal period, ERG acts as a direct upstream regulator of Gata2 and Runx1 gene activity. Without ERG, physiological HSC maintenance fails, leading to the rapid exhaustion of definitive hematopoiesis.
The transcription factor Runx1 is a pivotal regulator of definitive hematopoiesis in mouse ontogeny. Vertebrate Runx1 is transcribed from 2 promoters, the distal P1 and proximal P2, which provide a paradigm of the complex transcriptional and translational control of Runx1 function. However, very little is known about the biologic relevance of alternative Runx1 promoter usage in definitive hematopoietic cell emergence. Here we report that both promoters are active at the very onset of definitive hematopoiesis, with a skewing toward the P2. Moreover, functional and morphologic analysis of a novel P1-null and an attenuated P2 mouse model revealed that although both promoters play important nonredundant roles in the emergence of definitive hematopoietic cells, the proximal P2 was most critically required for this. The nature of the observed phenotypes is indicative of a differential contribution of the P1 and P2 promoters to the control of overall Runx1 levels, where and when this is most critically required. In addition, the dynamic expression of P1-Runx1 and P2-Runx1 points at a requirement for Runx1 early in development, when the P2 is still the prevalent promoter in the emerging hemogenic endothelium and/or first committed hematopoietic cells. (Blood. 2010;115(15): 3042-3050) IntroductionThe generation of the definitive hematopoietic system during embryogenesis critically depends on the transcription factor Runx1. In mice, homozygous loss of Runx1 function results in embryonic lethality attributable to a complete lack of functional definitive hematopoietic stem cells (HSCs) and progenitor cells and hemorrhages in the central nervous system. 1-3 Runx1 belongs to the family of runt-domain transcription factors. The 3 mammalian members of this family, Runx1, 2, and 3, all are important developmental regulators and bind to the same DNA motif. 4 Although both Runx2 and Runx3 have been implicated in hematopoiesis, only Runx1 has a role in the emergence of definitive hematopoietic cells, 5 reflecting its specific expression at hemogenic sites. 6,7 Recently, it was shown that Runx1 is required in VE-cadherin ϩ cells of the embryo, within the developmental window that starts with the initiation of Runx1 expression in these cells and ends when/before definitive HSCs reach the embryonic day (E) 11 fetal liver (FL). 8 Although the precise developmental stage(s) at which Runx1 is required within this window remains to be determined, it is generally believed to be at the transition of hemogenic endothelium to definitive hematopoietic cells. 6,[8][9][10] In the adult, Runx1 is no longer critically required in HSCs, although it still plays important roles in maintaining hematopoietic homeostasis and in the generation of specific hematopoietic cells/lineages. [11][12][13] Not only the expression pattern of Runx1 but also its levels need to be tightly controlled for the normal emergence of HSCs in the embryo. 3 To gain insight into how this is achieved, we have initiated studies into the transcriptional regulation of Runx1. 14,15...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.