Power and cost constraints in the internet-ofthings (IoT) extreme-edge and TinyML domains, coupled with increasing performance requirements, motivate a trend toward heterogeneous architectures. These designs use energyefficient application-class host processors to coordinate computespecialized multicore accelerators, amortizing the architectural costs of operating system support and external communication. This brief presents Cheshire, a lightweight and modular 64-bit Linux-capable host platform designed for the seamless plug-in of domain-specific accelerators. It features a unique low-pin-count DRAM interface, a last-level cache configurable as scratchpad memory, and a DMA engine enabling efficient data movement to or from accelerators or DRAM. It also provides numerous optional IO peripherals including UART, SPI, I2C, VGA, and GPIOs. Cheshire's synthesizable RTL description, comprising all of its peripherals and its fully digital DRAM interface, is available free and open-source. We implemented and fabricated Cheshire as a silicon demonstrator called Neo in TSMC's 65nm CMOS technology. At 1.2 V, Neo achieves clock frequencies of up to 325 MHz while not exceeding 300 mW in total power on dataintensive computational workloads. Its RPC DRAM interface consumes only 250 pJ/B and incurs only 3.5 kGE in area for its PHY while attaining a peak transfer rate of 750 MB/s at 200 MHz.
Computing systems have shifted towards highly parallel and heterogeneous architectures to tackle the challenges imposed by limited power budgets. These architectures must be supported by novel power management paradigms addressing the increasing design size, parallelism, and heterogeneity while ensuring high accuracy and low overhead. In this work, we propose a systematic, automated, and architectureagnostic approach to accurate and lightweight DVFS-aware statistical power modeling of the CPU and GPU sub-systems of a heterogeneous platform, driven by the sub-systems' local performance monitoring counters (PMCs). Counter selection is guided by a generally applicable statistical method that identifies the minimal subsets of counters robustly correlating to power dissipation. Based on the selected counters, we train a set of lightweight, linear models characterizing each sub-system over a range of frequencies. Such models compose a lookup-table-based systemlevel model that efficiently captures the non-linearity of power consumption, showing desirable responsiveness and decomposability. We validate the system-level model on real hardware by measuring the total energy consumption of an NVIDIA Jetson AGX Xavier platform over a set of benchmarks. The resulting average estimation error is 1.3%, with a maximum of 3.1%. Furthermore, the model shows a maximum evaluation runtime of 500 ns, thus implying a negligible impact on system utilization and applicability to online dynamic power management (DPM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.