Over almost five decades of development and improvement, Magnetic Resonance Imaging (MRI) has become a rich and powerful, non-invasive technique in medical imaging, yet not reaching its physical limits. Technical and physiological restrictions constrain physically feasible developments. A common solution to improve imaging speed and resolution is to use higher field strengths, which also has subtle and potentially harmful implications. However, patient safety is to be considered utterly important at all stages of research and clinical routine. Here we show that dynamic metamaterials are a promising solution to expand the potential of MRI and to overcome some limitations. A thin, smart, non-linear metamaterial is presented that enhances the imaging performance and increases the signal-to-noise ratio in 3T MRI significantly (up to eightfold), whilst the transmit field is not affected due to self-detuning and, thus, patient safety is also assured. This self-detuning works without introducing any additional overhead related to MRI-compatible electronic control components or active (de-)tuning mechanisms. The design paradigm, simulation results, on-bench characterization, and MRI experiments using homogeneous and structural phantoms are described. The suggested single-layer metasurface paves the way for conformal and patient-specific manufacturing, which was not possible before due to typically bulky and rigid metamaterial structures.
In this study, a novel compact controlled reception pattern antenna for global navigation satellite system (GNSS) applications is presented. Details of the design and the fabrication are given together with measurement results. The miniaturisation has been achieved by employing a five-element polarimetric array approach, resulting in anti-jamming capabilities for many applications where the antenna size is a major constraint. The antenna has a relatively wide bandwidth around the GNSS L1 band which contains many different GNSS signals. The anti-jamming performance of the antenna with respect to differently polarised jammers as well as its positioning capability are investigated
Polarimetric radar systems are beneficial to identifying and classifying targets but require multiple transmit or receive channels with different polarizations. This leads to a high hardware effort and thus higher costs. To use a single, linear polarized radar sensor as a polarimetric system, a frequencydependent, polarization rotating reflector which can be placed in front of the radar antenna is presented. The reflector is based on a frequency selective surface (FSS) consisting of slot-excited substrate integrated waveguide (SIW) resonators. Resonator modes are analyzed and an equivalent circuit diagram to describe the filter functionality is developed. For using the described FSS as reflective structure, the design focuses on 45 • oblique incidence. Different field vectors for normal and oblique incident angles are considered and different cavity modes for these cases are analyzed. An undesired mode is suppressed by an additional plated through via hole and slot impedances are matched. Reflector designs for normal and oblique incident angles are presented for 15 GHz (K u-band) and afterward adapted to 35 GHz (K a-band). The frequency band of operation with 12% fractional bandwidth is divided into two 4.5% subbands which allows a frequency-dependent polarization rotation of a linear polarized electromagnetic wave. Investigations on the fabrication accuracies are presented and reflectors for both bands are manufactured. Measurements are performed with a vector network analyzer and results fit well to the simulated curves. In the band of polarization rotation reflection, the matching is better than −13 dB and dielectric losses of less than 1 dB are achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.