Abstract. The rapid growth in the number of insecure portable and stationary devices and the exponential increase of traffic volume makes Distributed Denial-of-Service (DDoS) attacks a top security threat to services provisioning. Existing defense mechanisms lack resources and flexibility to cope with attacks by themselves, and by utilizing other's companies resources, the burden of the mitigation can be shared. Emerging technologies such as blockchain and smart contracts allows for the sharing of attack information in a fully distributed and automated fashion. In this paper, the design of a novel architecture is proposed by combining these technologies introducing new opportunities for flexible and efficient DDoS mitigation solutions across multiple domains. Main advantages are the deployment of an already existing public and distributed infrastructure to advertise white or blacklisted IP addresses, and the usage of such infrastructure as an additional security mechanism to existing DDoS defense systems, without the need to build specialized registries or other distribution mechanisms, which enables the enforcement of rules across multiple domains.
Peer-to-peer (P2P) systems show numerous advantages over centralized systems, such as load balancing, scalability, and fault tolerance, and they require certain functionality, such as search, repair, and message and data transfer. In particular, structured P2P networks perform an exact search in logarithmic time proportional to the number of peers. However, keyword similarity search in a structured P2P network remains a challenge. Similarity search for service discovery can significantly improve service management in a distributed environment. As services are often described informally in text form, keyword similarity search can find the required services or data items more reliably. This paper presents a fast similarity search algorithm for structured P2P systems. The new algorithm, called P2P fast similarity search (P2PFastSS), finds similar keys in any distributed hash table (DHT) using the edit distance metric, and is independent of the underlying P2P routing algorithm. Performance analysis shows that P2PFastSS carries out a similarity search in time proportional to the logarithm of the number of peers. Simulations on PlanetLab confirm these results and show that a similarity search with 34,000 peers performs in less than three seconds on average. Thus, P2PFastSS is suitable for similarity search in large-scale network infrastructures, such as service description matching in service discovery or searching for similar terms in P2P storage networks. Abstract-Peer-to-peer (P2P) systems show numerous advantages over centralized systems, such as load balancing, scalability, and fault tolerance, and they require certain functionality, such as search, repair, and message and data transfer. In particular, structured P2P networks perform an exact search in logarithmic time proportional to the number of peers. However, keyword similarity search in a structured P2P network remains a challenge. Similarity search for service discovery can significantly improve service management in a distributed environment. As services are often described informally in text form, keyword similarity search can find the required services or data items more reliably. This paper presents a fast similarity search algorithm for structured P2P systems. The new algorithm, called P2P Fast Similarity Search (P2PFastSS), finds similar keys in any distributed hash table (DHT) using the edit distance metric, and is independent of the underlying P2P routing algorithm. Performance analysis shows that P2PFastSS carries out a similarity search in time proportional to the logarithm of the number of peers. Simulations on PlanetLab confirm these results and show that a similarity search with 34,000 peers performs in less than three seconds on average. Thus, P2PFastSS is suitable for similarity search in large-scale network infrastructures, such as service description matching in service discovery or searching for similar terms in P2P storage networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.