In this paper we studied a new approach to investigate sound perception. Assuming that a sound contains specific morphologies that convey perceptually relevant information responsible for its recognition, called invariants, we explored the possibility of a new method to determine such invariants, using vocal imitation. We conducted an experiment, asking participants to imitate sounds evoking movements and materials generated through a sound synthesizer. Given that that the sounds produced by the synthesizer were based on invariant structures, we aimed at retrieving this information from the imitations. Results showed that the participants were able to correctly imitate the dynamics of the sounds, i.e. the action-related information evoked by the sound, whereas texture-related information evoking the material of the sound source was less easily imitated.
Understanding how sounds are perceived and interpreted is an important challenge for researchers dealing with auditory perception. The ecological approach to perception suggests that the salient perceptual information that enables an auditor to recognize events through sounds is contained in specific structures called invariants. Identifying such invariants is of interest from a fundamental point of view to better understand auditory perception and it is also useful to include perceptual considerations to model and control sounds. Among the different approaches used to identify perceptually relevant sound structures, vocal imitations are believed to bring a fresh perspective to the field. The main goal of this paper is to better understand how invariants are transmitted through vocal imitations. A sound corpus containing different types of known invariants obtained from an existing synthesizer was established. Participants took part in a test where they were asked to imitate the sound corpus. A continuous and sparse model adapted to the specificities of the vocal imitations was then developed and used to analyze the imitations. Results show that participants were able to highlight salient elements of the sounds that partially correspond to the invariants used in the sound corpus. This study also confirms that vocal imitations reveal how these invariants are transmitted through perception and offers promising perspectives on auditory investigations.
This article describes a listening experiment based on elicitation interviews that aims at describing the conscious experience of a subject submitted to a perceptual stimulation. As opposed to traditional listening experiments in which subjects are generally influenced by closed or suggestive questions and limited to predefined, forced choices, elicitation interviews make it possible to get a deeper insight into the listener's perception, in particular to the pre-reflexive content of the conscious experiences. Inspired by previous elicitation interviews during which subjects passively listened to sounds, this experience is based on an active task during which the subjects were asked to reproduce a sound with a stylus on a graphic tablet that controlled a synthesis model. The reproduction was followed by an elicitation interview. The trace of the graphic gesture as well as the answers recorded during the interview were then analyzed. Results revealed that the subjects varied their focus towards both the evoked sound source, and intrinsic sound properties and also described their sensations induced by the experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.