For data practitioners embracing the world of RDF and Linked Data, the openness and flexibility is a mixed blessing. For them, data validation according to predefined constraints is a much sought-after feature, particularly as this is taken for granted in the XML world. Based on our work in the DCMI RDF Application Profiles Task Group and in cooperation with the W3C Data Shapes Working Group, we published by today 81 types of constraints that are required by various stakeholders for data applications. These constraint types form the basis to investigate the role that reasoning and different semantics play in practical data validation, why reasoning is beneficial for RDF validation, and how to overcome the major shortcomings when validating RDF data by performing reasoning prior to validation. For each constraint type, we examine (1) if reasoning may improve data quality, (2) how efficient in terms of runtime validation is performed with and without reasoning, and (3) if validation results depend on underlying semantics which differs between reasoning and validation. Using these findings, we determine for the most common constraint languages which constraint types they enable to express and give directions for the further development of constraint languages.
Designing domain ontologies from scratch is a time-consuming endeavor requiring a lot of close collaboration with domain experts. However, domain descriptions such as XML Schemas are often available in early stages of the ontology development process. For my dissertation, I propose a method to convert XML Schemas to OWL ontologies in an automatic way. The approach addresses the transformation of any XML Schema documents by using the XML Schema metamodel, which is completely represented by the XML Schema Metamodel Ontology. Automatically, all Schema declarations and definitions are converted to class axioms, which are intended to be enriched with additional domain-specific semantic information in form of domain ontologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.