In a temperature dependent CPT-Violating (CPTV) axial time-like background (induced by the Kalb-Ramond tensor field of string theory) we discuss leptogenesis by solving the Boltzmann equation.The current work non-trivially modifies the framework of a previous phenomenological approach by the authors where the CPTV axial background was considered to be a constant (with no microscopic justification). The constant background approximation though is shown to capture the main phenomenological features of leptogenesis. On comparing our analysis to the related chiral magnetic effect for axial current condensates, we conclude that the Kalb-Ramond field does not play the role of the chiral chemical potential needed for that effect.
We discuss leptogenesis in a model with heavy right-handed Majorana neutrinos propagating in a constant but otherwise generic CPT -violating axial time-like background (motivated by string theory). At temperatures much higher than the temperature of the electroweak phase transition, we solve approximately, but analytically (using Padé approximants), the corresponding Boltzmann equations, which describe the generation of lepton asymmetry from the tree-level decays of heavy neutrinos into Standard Model leptons. At such temperatures these leptons are effectively massless. The current work completes in a rigorous way a preliminary treatment of the same system, by some of the present authors. In this earlier work, lepton asymmetry was crudely estimated considering the decay of a righthanded neutrino at rest. Our present analysis includes thermal momentum modes for the heavy neutrino and this leads to a total lepton asymmetry which is bigger by a factor of two as compared to the previous estimate. Nevertheless, our current and preliminary results for the freezeout are found to be in agreement (within a ∼ 12.5% uncertainty). Our analysis depends on a novel use of Padé approximants to solve the Boltzmann equations and may be more widely useful in cosmology.
In a temperature dependent CPT-Violating (CPTV) axial time-like background (induced by the Kalb-Ramond tensor field of string theory) we discuss leptogenesis by solving the Boltzmann equation. The current work non-trivially modifies the framework of a previous phenomenological approach (where the author was involved) where the CPTV axial background was considered to be a constant. The constant background approximation is shown to capture the main phenomenological features of leptogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.