Polymer cold-drawing is a process in which tensile stress reduces the diameter of a drawn fibre (or thickness of a drawn film) and orients the polymeric chains. Cold-drawing has long been used in industrial applications, including the production of flexible fibres with high tensile strength such as polyester and nylon. However, cold-drawing of a composite structure has been less studied. Here we show that in a multimaterial fibre composed of a brittle core embedded in a ductile polymer cladding, cold-drawing results in a surprising phenomenon: controllable and sequential fragmentation of the core to produce uniformly sized rods along metres of fibre, rather than the expected random or chaotic fragmentation. These embedded structures arise from mechanical-geometric instabilities associated with 'neck' propagation. Embedded, structured multimaterial threads with complex transverse geometry are thus fragmented into a periodic train of rods held stationary in the polymer cladding. These rods can then be easily extracted via selective dissolution of the cladding, or can self-heal by thermal restoration to re-form the brittle thread. Our method is also applicable to composites with flat rather than cylindrical geometries, in which case cold-drawing leads to the break-up of an embedded or coated brittle film into narrow parallel strips that are aligned normally to the drawing axis. A range of materials was explored to establish the universality of this effect, including silicon, germanium, gold, glasses, silk, polystyrene, biodegradable polymers and ice. We observe, and verify through nonlinear finite-element simulations, a linear relationship between the smallest transverse scale and the longitudinal break-up period. These results may lead to the development of dynamical and thermoreversible camouflaging via a nanoscale Venetian-blind effect, and the fabrication of large-area structured surfaces that facilitate high-sensitivity bio-detection.
Cyclic plasticity and creep are the primary design considerations of 1st and 2nd stage gas turbine blades. Directionally-solidified (DS) Ni-base materials have been developed to provide (1) greater creep ductility and (2) lower minimum creep rate in solidification direction compared to other directions. Tracking the evolution of deformation in DS structures necessitates a constitutive model having the functionality to capture rate-, temperature-, history-, and orientation-dependence. Historically, models rooted in microstructurally-based viscoplasticity simulate the response of long-crystal, dual-phase Ni-base superalloys with extraordinary fidelity; however, a macroscopic approach having reduced order is leveraged to simulate LCF, creep, and creep-fatigue responses with equally high accuracy. This study applies uncoupled creep and plasticity models to predict the TMF of a generic DS Ni-base, and an anisotropic yield theory accounts for transversely-isotropic strength. Due to the fully analytic determination of material constants from mechanical test data, the model can be readily tuned for materials in either peak- or base-loaded units. Application of the model via a parametric study reveals trends in the stabilized hysteresis response of under isothermal fatigue, creep-fatigue, thermomechanical fatigue, and conditions representative of in-service components. Though frequently considered in design and maintenance of turbine materials, non-isothermal fatigue has yet to be accurately predicted for a generalized set of loading conditions. The formulations presented in this study address this knowledge gap using extensions of traditional power law constitutive models.
Simulation plays a critical role in the development and evaluation of critical components that are regularly subjected to mechanical loads at elevated temperatures. The cost, applicability, and accuracy of either numerical or analytical simulations are largely dependent on the material model chosen for the application. A noninteraction (NI) model derived from individual elastic, plastic, and creep components is developed in this study. The candidate material under examination for this application is 2.25Cr–1Mo, a low-alloy ferritic steel commonly used in chemical processing, nuclear reactors, pressure vessels, and power generation. Data acquired from prior research over a range of temperatures up to 650 °C are used to calibrate the creep and plastic components described using constitutive models generally native to general-purpose fea. Traditional methods invoked to generate constitutive modeling coefficients employ numerical fittings of hysteresis data, which result in values that are neither repeatable nor display reasonable temperature dependence. By extrapolating simplifications commonly used for reduced-order model approximations, an extension utilizing only the cyclic Ramberg–Osgood (RO) coefficients has been developed. This method is used to identify the nonlinear kinematic hardening (NLKH) constants needed at each temperature. Single-element simulations are conducted to verify the accuracy of the approach. Results are compared with isothermal and nonisothermal literature data.
Next-generation, reusable hypersonic aircraft will be subjected to extreme environments that produce complex fatigue loads at high temperatures, reminiscent of the life-limiting thermal and mechanical loads present in large gas-powered land-based turbines. In both of these applications, there is a need for greater fidelity in the constitutive material models employed in finite element simulations, resulting in the transition to nonlinear formulations. One such formulation is the nonlinear kinematic hardening (NLKH) model, which is a plasticity model quickly gaining popularity in the industrial sector, and can be found in commercial finite element software. The drawback to using models like the NLKH model is that the parameterization can be difficult, and the numerical fitting techniques commonly used for such tasks may result in constants devoid of physical meaning. This study presents a simple method to derive these constants by extrapolation of a reduced-order model, where the cyclic Ramberg–Osgood (CRO) formulation is used to obtain the parameters of a three-part NLKH model. This fitting scheme is used with basic literature-based data to fully characterize a constitutive model for Inconel 617 at temperatures between 20 °C and 1000 °C. This model is validated for low-cycle fatigue (LCF), creep-fatigue (CF), thermomechanical fatigue (TMF), and combined thermomechanical-high-cycle fatigue (HCF) using a mix of literature data and original data produced at the Air Force Research Laboratory (AFRL).
Material selection for key components is a critical step in the design process where high temperature and large loads are involved. Service conditions, however, may be more aggressive than those to which many materials have been exposed to in laboratory conditions. For example, key combustion equipment will experience super-imposed thermal, mechanical, and vibratory loading. Despite the more recent efforts to characterize materials under these so-called combined extreme environments (CEEs), the temperature- and rate-dependent cyclic hardening/softening responses are still relatively under-characterized. A method to develop first approximations of constitutive model/parameters for materials under extreme service conditions is presented. The method is exercised on IN617 a Ni-base alloy often employed for high temperature applications. The approach shows that a minimal collection of tensile, creep, and LCF data are needed to develop predictions of materials under thermomechanical fatigue with vibratory loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.