The SCF ubiquitin ligase complex regulates diverse cellular functions by ubiquitinating numerous protein substrates. Cand1, a 120 kDa HEAT repeat protein, forms a tight complex with the Cul1-Roc1 SCF catalytic core, inhibiting the assembly of the multisubunit E3 complex. The crystal structure of the Cand1-Cul1-Roc1 complex shows that Cand1 adopts a highly sinuous superhelical structure, clamping around the elongated SCF scaffold protein Cul1. At one end, a Cand1 beta hairpin protrusion partially occupies the adaptor binding site on Cul1, inhibiting its interactions with the Skp1 adaptor and the substrate-recruiting F box protein subunits. At the other end, two Cand1 HEAT repeats pack against a conserved Cul1 surface cleft and bury a Cul1 lysine residue, whose modification by the ubiquitin-like protein, Nedd8, is able to block Cand1-Cul1 association. Together with biochemical evidence, these structural results elucidate the mechanisms by which Cand1 and Nedd8 regulate the assembly-disassembly cycles of SCF and other cullin-dependent E3 complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.