Oxidized and neutral films of polypyrrole have been prepared electrochemically in the absence of oxygen and water. The neutral rms are insulating and can be readily oxidized by chemical oxidizing agents to give films of greater conductivity than can be achieved by electrochemical oxidation. Optical spectroscopy provides evidence for the similarity of the polymeric carbonium ion produced by both types of oxidation. NMR studies are consistent with the-,a' bonding in these polymers; they also show the expected downfield shifts relative to the neutral polymer on both chemical and electrochemical oxidation. ESR studies of both the electrochemically oxidized and the neutral polymer suggest the presence of highly mobile spins. Oxidized and neutral films of polypyrrole have been prepared electrochemically in the absence of oxygen and water. The neutral films are insulating and can be readily oxidized by chemical oxidizing agents to give films of greater conductivity than can be achieved by electrochemical oxidation. Optical spectroscopy provides evidence for the similarity of the polymeric carbonium ion produced by both types of oxidation. NMR studies are consistent with the a,a' bonding in these polymers; they also show the expected downfield shifts relative to the neutral polymer on both chemical and electrochemical oxidation. ESR studies of both the electrochemically oxidized and the neutral polymer suggest the presence of highly mobile spins.
The optical transmittance spectra of polypyrrole perchlorate have been measured at various stages in the reduction to neutral polypyrrole at 300 and 120 K and at high pressure. Analysis of the results suggests that the polypyrrole chain is composed of conjugated segments of various lengths. The optical conductivity spectrum of polypyrrole perchlorate was obtained by the Kramers-Kronig transformation of the transmittance data from 0.025 to 6.25 eV. The spectrum is not consistent with Drude-Iike free carriers. The conduction mechanism probably involves hopping between the conjugated segments.
The influence of morphological transitions on the hydrogen‐bonding behavior of polyurethanes is investigated by simultaneous measurements of Fourier‐transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The materials examined are a noncrystalline polyurethane hard segment, a crystallizable polyurethane hard segment, and a segmented polyurethane block copolymer containing crystallizable hard segments. Integrated absorbance data show that the hydrogen‐bonding behavior is insensitive to crystalline transitions within the hard segment microdomains, but that it does reflect morphological transitions in the block copolymer that are associated with intersegmental mixing. In addition, the spectral data show conclusive evidence for reversal of the urethane reaction at high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.