Here we present and test several computational prescriptions for calculating singlet-triplet (ST) gap energies and bond dissociation curves for open-shell singlet diradicals using economical unrestricted single reference type calculations. For ST gap energies from Slipchenko and Krylov's atom and molecule test set (C, O, Si, NH, NF, OH(+), O(2), CH(2), and NH(2)(+)) spin unrestricted Hartree-Fock and MP2 energies result in errors greater than 15 kcal/mol. However, spin-projected (SP) Hartree-Fock theory in combination with spin-component-scaled (SCS) or scaled-opposite-spin (SOS) second-order perturbation theory gives ST gap energies with a mean unsigned error (MUE) of less than 2 kcal/mol. Density functionals generally give poor results for unrestricted energies and only the ωB97X-D, the M06, and the M06-2X functionals provide reasonable accuracy after spin-projection with MUE values of 4.7, 4.3, and 3.0 kcal/mol, respectively, with the 6-311++G(2d,2p) basis set. We also present a new one parameter hybrid density functional, diradical-1 (DR-1), based on Adamo and Barone's modified PW exchange functional with the PW91 correlation functional. This DR-1 method gives a mean error (ME) of 0.0 kcal/mol and a MUE value of 1.3 kcal/mol for ST gap energies. As another test of unrestricted methods the bond dissociation curves for methane (CH(4)) and hydrofluoric acid (H-F) were calculated with the M06-2X, DR-1, and ωB97X-D density functionals. All three of these functionals give reasonable results for the methane C-H bond but result in errors greater than 50 kcal/mol for the H-F bond dissociation. Spin-projection is found to significantly degrade bond dissociation curves past ~2.2 Å. Although unrestricted Hartree-Fock theory provides a very poor description of H-F bond dissociation, unrestricted SCS-MP2 and SOS-MP2 methods give accurate results.
Density functional theory was used to model glycinate enolate binding and enantiomeric allylation transition states mediated by the cinchonidinium phase-transfer catalyst 2. Transition states show oxy-anion-ammonium interactions in contrast to π-face interactions in the ground states. The details of stereoselectivity are described within the quaternary ammonium-tetrahedron face model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.