Phylogenetic relationships in recent, rapid radiations can be difficult to resolve due to incomplete lineage sorting and reliance on genetic markers that evolve slowly relative to the rate of speciation. By incorporating hundreds to thousands of unlinked loci, phylogenomic analyses have the potential to mitigate these difficulties. Here, we attempt to resolve phylogenetic relationships among eight shrew species (genus Crocidura) from the Philippines, a phylogenetic problem that has proven intractable with small (< 10 loci) data sets. We sequenced hundreds of ultraconserved elements and whole mitochondrial genomes in these species and estimated phylogenies using concatenation, summary coalescent, and hierarchical coalescent methods. The concatenated approach recovered a maximally supported and fully resolved tree. In contrast, the coalescent-based approaches produced similar topologies, but each had several poorly supported nodes. Using simulations, we demonstrate that the concatenated tree could be positively misleading. Our simulations also show that the tree shape we tend to infer, which involves a series of short internal branches, is difficult to resolve, even if substitution models are known and multiple individuals per species are sampled. As such, the low support we obtained for backbone relationships in our coalescent-based inferences reflects a real and appropriate lack of certainty. Our results illuminate the challenges of estimating a bifurcating tree in a rapid and recent radiation, providing a rare empirical example of a nearly simultaneous series of speciation events in a terrestrial animal lineage as it spreads across an oceanic archipelago.
The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.