Fast and robust pupil detection is an essential prerequisite for video-based eye-tracking in real-world settings. Several algorithms for image-based pupil detection have been proposed, their applicability is mostly limited to laboratory conditions. In realworld scenarios, automated pupil detection has to face various challenges, such as illumination changes, reflections (on glasses), make-up, non-centered eye recording, and physiological eye characteristics. We propose ElSe, a novel algorithm based on ellipse evaluation of a filtered edge image. We aim at a robust, resource-saving approach that can be integrated in embedded architectures e.g. driving. The proposed algorithm was evaluated against four state-of-the-art methods on over 93,000 hand-labeled images from which 55,000 are new images contributed by this work. On average, the proposed method achieved a 14.53% improvement on the detection rate relative to the best state-of-the-art performer. download:ftp://emmapupildata@messor.informatik.unituebingen.de (password:eyedata).
Smooth pursuit eye movements provide meaningful insights and information on subject's behavior and health and may, in particular situations, disturb the performance of typical fixation/saccade classification algorithms. Thus, an automatic and efficient algorithm to identify these eye movements is paramount for eye-tracking research involving dynamic stimuli. In this paper, we propose the Bayesian Decision Theory Identification (I-BDT) algorithm, a novel algorithm for ternary classification of eye movements that is able to reliably separate fixations, saccades, and smooth pursuits in an online fashion, even for low-resolution eye trackers. The proposed algorithm is evaluated on four datasets with distinct mixtures of eye movements, including fixations, saccades, as well as straight and circular smooth pursuits; data was collected with a sample rate of 30 Hz from six subjects, totaling 24 evaluation datasets. The algorithm exhibits high and consistent performance across all datasets and movements relative to a manual annotation by a domain expert (recall: µ = 91.42%, σ = 9.52%; precision: µ = 95.60%, σ = 5.29%; specificity µ = 95.41%, σ = 7.02%) and displays a significant improvement when compared to I-VDT, an state-of-the-art algorithm (recall: µ = 87.67%, σ = 14.73%; precision: µ = 89.57%, σ = 8.05%; specificity µ = 92.10%, σ = 11.21%). For the algorithm implementation and annotated datasets, please contact the first author.based on the raw eye-position signal is critical for research and applications involving eye trackers -such as cognitive science and medical research, task assistance (e.g., driving) and marketing applications, and Human Computer Interfaces (HCI).
Our study suggests that a considerable subgroup of subjects with binocular glaucomatous visual field loss shows a safe driving behavior in a virtual reality environment, because they adapt their viewing behavior by increasing their visual scanning. Hence, binocular visual field loss does not necessarily influence driving safety. We recommend that more individualized driving assessments, which will take into account the patient's ability to compensate, are required.
Our eye movements are driven by a continuous trade-off between the need for detailed examination of objects of interest and the necessity to keep an overview of our surrounding. In consequence, behavioral patterns that are characteristic for our actions and their planning are typically manifested in the way we move our eyes to interact with our environment. Identifying such patterns from individual eye movement measurements is however highly challenging. In this work, we tackle the challenge of quantifying the influence of experimental factors on eye movement sequences. We introduce an algorithm for extracting sequence-sensitive features from eye movements and for the classification of eye movements based on the frequencies of small subsequences. Our approach is evaluated against the state-of-the art on a novel and a very rich collection of eye movements data derived from four experimental settings, from static viewing tasks to highly dynamic outdoor settings. Our results show that the proposed method is able to classify eye movement sequences over a variety of experimental designs. The choice of parameters is discussed in detail with special focus on highlighting different aspects of general scanpath shape. Algorithms and evaluation data are available at: www.ti.uni-tuebingen.de/scanpathcomparison.html.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.