The low molecular weight plasma proteome and its biological relevance are not well defined; therefore, experiments were conducted to directly sequence and identify peptides observed in plasma and serum protein profiles. Protein fractionation, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) profiling, and liquid-chromatography coupled to MALDI tandem mass spectrometry (MS/MS) sequencing were used to analyze the low molecular weight proteome of heparinized plasma. Four fractionation techniques using functionally derivatized 96-well plates were used to extract peptides from plasma. Tandem TOF was successful for identifying peptides up to m/z 5500 with no prior knowledge of the sequence and was also used to verify the sequence assignments for larger ion signals. The peptides (n>250) sequenced in these profiles came from a surprisingly small number of proteins (n approximately 20), which were all common to plasma, including fibrinogen, complement components, antiproteases, and carrier proteins. The cleavage patterns were consistent with those of known plasma proteases, including initial cleavages by thrombin, plasmin and complement proteins, followed by aminopeptidase and carboxypeptidase activity. On the basis of these data, we discuss limitations in biomarker discovery in the low molecular weight plasma or serum proteome using crude fractionation coupled to MALDI-MS profiling.
In order to discover global gene expression patterns characterizing subgroups of colon cancer, microarrays were hybridized to labeled RNAs obtained from seventeen colonic specimens (nine carcinomas and eight normal samples). Using a hierarchical agglomerative method, the samples grouped naturally into two major clusters, in perfect concordance with pathological reports (colon cancer versus normal colon). Using a variant of the unpaired t-test, selected genes were ordered according to an index of importance. In order to confirm microarray data, we performed quantitative, real-time reverse transcriptase -polymerase chain reaction (TaqMan RT -PCR) on RNAs from 13 colorectal tumors and 13 normal tissues (seven of which were matched normal-tumor pairs). RT -PCR was performed on the gro1, B-factor, adlican, and endothelin converting enzyme-1 genes and confirmed microarray findings. Two hundred and fifty genes were identified, some of which were previously reported as being involved in colon cancer. We conclude that cDNA microarraying, combined with bioinformatics tools, can accurately classify colon specimens according to current histopathological taxonomy. Moreover, this technology holds promise of providing invaluable insight into specific gene roles in the development and progression of colon cancer. Our data suggests that a large-scale approach may be undertaken with the purpose of identifying biomarkers relevant to cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.