TWIST, a basic helix-loop-helix (bHLH) transcription factor that regulates mesodermal development, has been shown to promote tumor cell metastasis and to enhance survival in response to cytotoxic stress. Our analysis of rat C6 glioma cell-derived cDNA revealed TWIST expression, suggesting that the gene may play a role in the genesis and physiology of primary brain tumors. To further delineate a possible oncogenic role for TWIST in the central nervous system (CNS), we analyzed TWIST expression in human gliomas and normal brain by using reverse transcription polymerase chain reaction, Northern blot analysis, in situ hybridization, and immunohistochemistry. TWIST expression was detected in the large majority of human glioma-derived cell lines and human gliomas examined. Levels of TWIST mRNA were associated with the highest grade gliomas, and increased TWIST expression accompanied transition from low grade to high grade in vivo, suggesting a role for TWIST in promoting malignant progression. In accord, elevated TWIST mRNA abundance preceded the spontaneous malignant transformation of cultured mouse astrocytes hemizygous for p53. Overexpression of TWIST protein in a human glioma cell line significantly enhanced tumor cell invasion, a hallmark of high-grade gliomas. These findings support roles for TWIST both in early glial tumorigenesis and subsequent malignant progression. TWIST was also expressed in embryonic and fetal human brain, and in neurons, but not glia, of mature brain, indicating that, in gliomas, TWIST may promote the functions also critical for CNS development or normal neuronal physiology.
The T cell receptor (TCR) from the alloreactive T lymphocyte 2C recognizes a nonamer peptide QL9 complexed with the MHC class I molecule H2-Ld. Forty-two single-site alanine substitutions of the 2C TCR were analyzed for binding to QL9/Ld and anti-TCR antibodies. The results provided a detailed energy map of T cell antigen recognition and indicated that the pMHC and clonotypic antibody epitopes on the TCR were similar. Although residues in each Valpha and Vbeta CDR are important in binding pMHC, the most significant energy for the TCR/QL9/Ld interaction was contributed by CDRs 1 and 2 of both alpha and beta chains. The extent to which the individual energy contributions are directed at class I helices or peptide was also assessed.
Periostin is a robust marker of glioma malignancy and potential tumor recurrence. Abrogation of glioma stem cell tumorigenicity after periostin inhibition provides support for exploring the therapeutic impact of targeting periostin.
Recent reports suggest that commensal bacteria may play a down-regulatory role in autoimmune disease. In the present studies, we demonstrate that phosphorylated dihydroceramides, uniquely structured lipids derived from the common human oral bacterium Porphyromonas gingivalis and from bacteria commonly found in the gastrointestinal tract and other organs, are capable of enhancing autoimmunity. We have previously reported that these lipids have proinflammatory effects on human fibroblasts in vitro and, in preliminary studies, have recovered these lipids from surgically removed human carotid atheroma, suggesting that they may play a role in human inflammatory disease. To investigate whether these lipids have functional effects on autoimmunity, we administered phosphorylated dihydroceramides to mice with the murine model of multiple sclerosis, experimental allergic encephalomyelitis (EAE). We find that these lipids, and particularly the phosphoethanolamine dihydroceramide (PE DHC) fraction, significantly enhanced EAE. Mechanistically, PE DHC enhances EAE in mice lacking natural killer T cells, fails to enhance EAE in Toll-like receptor 2 (TLR2)-deficient mice and, in vitro, induces dendritic cell interleukin-6 secretion in a TLR2-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.