BackgroundAbdominal aortic aneurysm (AAA) is a dilatation of the aorta affecting most frequently elderly men. Histologically AAAs are characterized by inflammation, vascular smooth muscle cell apoptosis, and extracellular matrix degradation. The mechanisms of AAA formation, progression, and rupture are currently poorly understood. A previous mRNA expression study revealed a large number of differentially expressed genes between AAA and non-aneurysmal control aortas. MicroRNAs (miRNAs), small non-coding RNAs that are post-transcriptional regulators of gene expression, could provide a mechanism for the differential expression of genes in AAA.MethodsTo determine differences in miRNA levels between AAA (n = 5) and control (n = 5) infrarenal aortic tissues, a microarray study was carried out. Results were adjusted using Benjamini-Hochberg correction (adjusted p < 0.05). Real-time quantitative RT-PCR (qRT-PCR) assays with an independent set of 36 AAA and seven control tissues were used for validation. Potential gene targets were retrieved from miRNA target prediction databases Pictar, TargetScan, and MiRTarget2. Networks from the target gene set were generated and examined using the network analysis programs, CytoScape® and Ingenuity Pathway Core Analysis®.ResultsA microarray study identified eight miRNAs with significantly different expression levels between AAA and controls (adjusted p < 0.05). Real-time qRT-PCR assays validated the findings for five of the eight miRNAs. A total of 222 predicted miRNA target genes known to be differentially expressed in AAA based on a prior mRNA microarray study were identified. Bioinformatic analyses revealed that several target genes are involved in apoptosis and activation of T cells.ConclusionsOur genome-wide approach revealed several differentially expressed miRNAs in human AAA tissue suggesting that miRNAs play a role in AAA pathogenesis.
We have developed a rapid procedure for isolating a fraction enriched in plasma membrane from DunalielIa salUna using an aqueous two-phase system (dextran/polyethylene glycol, 6.7%/ 6.7%). An enriched plasma membrane fraction, free of chloroplast and mitochondrial contamination, could be obtained in 2.5 hours. Plasma membrane proteins, which accounted for approximately 1% of the total membrane protein, contained a number of unique proteins compared with the other cell fractions, as shown by gel electrophoresis. The lipids of the plasma membrane fraction from 1.7 molar NaCI-grown cells were extracted and characterized. Phosphafidylethanolamine and phosphatidylcholine were the two most prevalent phospholipids, at 20.6% and 6.0% of the total lipid, respectively. In addition, inositol phospholipids were a significant component of the D. salina plasma membrane fraction.Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate accounted for 5.2% and 1.5% of the plasma membrane phospholipid, respectively. Diacylglyceryltrimethylhomoserine accounted for 7.9% of the plasma membrane total lipid. Free sterols were the major component of the plasma membrane fraction, at 55% of the total lipid, and consisted of ergosterol and 7-dehydroporiferasterol. Sterol peroxides were not present in the plasma membrane fraction. The lipid composition of enriched plasma membrane fractions from cells grown at 0.85 molar NaCI and 3.4 molar NaCI were compared with those grown at 1.7 molar NaCI. The concentration of diacylglyceryltrimethylhomoserine and the degree of plasma membrane fatty acid saturation increased in 3.4 molar plasma membranes. The relative concentration of sterols in the plasma membrane fraction was similar in all three NaCI concentrations tested.
In comparison with other cell organelles, the Dunaliella salina plasma membrane was found to be highly enriched in phospholipase C activity toward exogenous [3H]
Shoots of 16-day-old soybeans (Glycine max L. Merr. cv Ransom) were chilled to 10°C for 7 days and monitored for visible signs of damage, ultrastructural changes, perturbations in fluorescence of chlorophyll (Chl), and quantitative changes in Chi a and b and associated pigments. Precautions were taken to prevent the confounding effects of water stress. A technique for the separation of lutein and zeaxanthin was developed utilizing a step gradient with the high performance liquid chromatograph. Visible losses in Chl were detectable within the first day of chilling, and regreening did not occur until the shoots were returned to 25°C. Ultrastructurally, unstacking of chloroplast grana occurred, and the envelope membranes developed protrusions. Furthermore, the lipids were altered to the point that the membranes were poorly stabilized by a glutaraldehyde/osmium double-fixation procedure. Chl fluorescence rates were greatly reduced within 2 hours after chilling began and returned to normal only after rewarming. The rapid loss of Chl that occurred during chilling was accompanied by the appearance of zeaxanthin and a decline in violaxanthin. Apparently a zeaxanthin-violaxanthin epoxidation/de-epoxidation cycle was operating. When only the roots were chilled, no substantial changes were detected in ultrastructure, fluorescence rates, or pigment levels.A large number of crop plants originated in the tropics or subtropics and begin to show deleterious responses as the temperature is lowered below 20°C. If there is physiological and structural damage, it is referred to as 'chilling injury.' The phenomenon has been well described (5,12,13).Among chilling sensitive plants such as Gossypium, Paspalum, Phaseolus vulgaris, and Glycine max, the chloroplast is the first of the organelles to show ultrastructural damage from chilling (1,11,29,35). Changes in chloroplast function have been tabulated for five chilling-sensitive species (26) and decline in photoreductive activity is common (10,14). Since changes in photosynthetic electron transfer activity can be monitored fluorometrically in intact leaves (20,26), changes in fluorescence of Chl have the potential for serving as a very early sign of chilling injury. This expectation is tested herein.Aside from the light energy transfer role of the carotenoids in photosynthetic membranes, they are known protectants of Chl against photooxidation. Apparently under chilling conditions, the equilibrium is shifted in the direction of excessive photooxidation (16, 29
Abdominal aortic aneurysm (AAA) is a complex disorder that has a significant impact on the aging population. While both genetic and environmental risk factors have been implicated in AAA formation, the precise genetic markers involved and the factors influencing their expression remain an area of ongoing investigation. DNA methylation has been previously used to study gene silencing in other inflammatory disorders and since AAA has an extensive inflammatory component, we sought to examine the genome-wide DNA methylation profiles in mononuclear blood cells of AAA cases and matched non-AAA controls. To this end, we collected blood samples and isolated mononuclear cells for DNA and RNA extraction from four all male groups: AAA smokers (n = 11), AAA non-smokers (n = 9), control smokers (n = 10) and control non-smokers (n = 11). Methylation data were obtained using the Illumina 450k Human Methylation Bead Chip and analyzed using the R language and multiple Bioconductor packages. Principal component analysis and linear analysis of CpG island subsets identified four regions with significant differences in methylation with respect to AAA: kelch-like family member 35 (KLHL35), calponin 2 (CNN2), serpin peptidase inhibitor clade B (ovalbumin) member 9 (SERPINB9), and adenylate cyclase 10 pseudogene 1 (ADCY10P1). Follow-up studies included RT-PCR and immunostaining for CNN2 and SERPINB9. These findings are novel and suggest DNA methylation may play a role in AAA pathobiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.