Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice.
The plague agent, Yersinia pestis, employs a type III secretion system (T3SS) to selectively destroy human immune cells, thereby enabling its replication in the bloodstream and transmission to new hosts via fleabite. The host factors responsible for the selective destruction of immune cells by plague bacteria were not known. Here we show that LcrV, the needle cap protein of the Y. pestis T3SS, binds N-formylpeptide receptor (FPR1) on human immune cells to promote the translocation of bacterial effectors. Plague infection in mice is characterized by high mortality, however N-formylpeptide receptor deficient animals exhibit increased survival and plagueprotective antibody responses. We identified FPR1 p.R190W as a candidate human resistance allele that protects neutrophils from Y. pestis T3SS. These findings reveal the plague receptor on immune cells and show that FPR1 mutations provide for plague survival, which appears to have shaped human immune responses towards other infectious diseases and malignant neoplasms.Yersinia pestis has caused human disease for more than 5,000 years 1 . Three pandemics were recorded, including the plague of Justinian (6 th -8 th ), the Black Death (14 th -18 th ) and the Asian Pandemic (19 th -20 th century) 2 . The Black Death killed more than half of Europe's population, suggesting plague must have shaped the human immune system by selecting for mutations that confer resistance 3 . Carriers of CCR5-Δ32, a gene variant of CC-type chemokine receptor 5 (CCR5), are resistant to infections with human immunodeficiency virus type 1 4 . CCR5 is a member of the 7-transmembrane spanning G protein coupled receptor (GPCR) family that is expressed on immune cells, whereas CCR5-Δ32 is not presented on cell surfaces 5 . The allele frequency of CCR5-Δ32 is high in Northern Europe and originated 800 years ago, suggesting its selection may be linked to the Black Death 6 . However, studies in mice did not reveal an impact of CCR5 on plague survival 7,8 . Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Correspondence should be addressed to D.M.
Bacterial lipoproteins are surface exposed, anchored to the membrane by S-diacylglyceryl modification of the N-terminal cysteine thiol. They play important roles in many essential cellular processes and in bacterial pathogenesis. For example, Clostridium difficile is a Gram-positive anaerobe that causes severe gastrointestinal disease; however, its lipoproteome remains poorly characterized. Here we describe the application of metabolic tagging with alkyne-tagged lipid analogs, in combination with quantitative proteomics, to profile protein lipidation across diverse C. difficile strains and on inactivation of specific components of the lipoprotein biogenesis pathway. These studies provide the first comprehensive map of the C. difficile lipoproteome, demonstrate the existence of two active lipoprotein signal peptidases, and provide insights into lipoprotein function, implicating the lipoproteome in transmission of this pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.