Sector coupling remains a crucial measure to achieve climate change mitigation targets. Hydrogen and Power-to-X (PtX) products are recognized as major levers to allow the boosting of renewable energy capacities and the consequent use of green electrons in different sectors. In this work, the challenges presented by the PtX processes are addressed and different process intensification (PI) strategies and their potential to overcome these challenges are reviewed for ammonia (NH3), dimethyl ether (DME) and oxymethylene dimethyl ethers (OME) as three exemplary, major PtX products. PI approaches in this context offer on the one hand the maximum utilization of valuable renewable feedstock and on the other hand simpler production processes. For the three discussed processes a compelling strategy for efficient and ultimately maintenance-free chemical synthesis is presented by integrating unit operations to overcome thermodynamic limitations, and in best cases eliminate the recycle loops. The proposed intensification processes offer a significant reduction of energy consumption and provide an interesting perspective for the future development of PtX technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.