Cells have evolved multiple mechanisms to apprehend and adapt finely to their environment. Here we report a new cellular ability, which we term “curvotaxis” that enables the cells to respond to cell-scale curvature variations, a ubiquitous trait of cellular biotopes. We develop ultra-smooth sinusoidal surfaces presenting modulations of curvature in all directions, and monitor cell behavior on these topographic landscapes. We show that adherent cells avoid convex regions during their migration and position themselves in concave valleys. Live imaging combined with functional analysis shows that curvotaxis relies on a dynamic interplay between the nucleus and the cytoskeleton—the nucleus acting as a mechanical sensor that leads the migrating cell toward concave curvatures. Further analyses show that substratum curvature affects focal adhesions organization and dynamics, nuclear shape, and gene expression. Altogether, this work identifies curvotaxis as a new cellular guiding mechanism and promotes cell-scale curvature as an essential physical cue.
Marine megafauna plays an important functional role in marine ecosystems as top predators but are threatened by a wide range of anthropogenic activities. Bycatch, the incidental capture of non-targeted species in commercial and recreational fisheries, is of particular concern for small cetacean species, such as dolphins and porpoises. In the North-East Atlantic, common dolphin (Delphinus delphis, Linné 1758) bycatch has been increasing and associated with large numbers of animals stranding during winter on the French Atlantic seashore since at least 2017. However, uncertainties around the true magnitude of common dolphin bycatch and the fisheries involved have led to delays in the implementation of mitigation measures. Current data collection on dolphin bycatch in France is with non-dedicated observers deployed on vessels for the purpose of national fisheries sampling programmes. These data cannot be assumed representative of the whole fisheries' bycatch events. This feature makes it difficult to use classic ratio estimators since they require a truly randomised sample of the fishery by dedicated observers. We applied a newly developed approach, regularised multilevel regression with post-stratification, to estimate total bycatch from unrepresentative samples and total fishing effort. The latter is needed for post-stratification and the former is analysed in a Bayesian framework with multilevel regression to regularise and better predict bycatch risk. We estimated the number of bycaught dolphins for each week and 10 International Council for the Exploration of the Sea (ICES) divisions from 2004 to 2020 by estimating jointly bycatch risk, haul duration, and the number of hauls per days at sea (DaS). Bycatch risk in pair trawlers flying the French flag was the highest in winter 2017 and 2019 and was associated with the longest haul durations. ICES divisions 8.a and 8.b (shelf part of the Bay of Biscay) were estimated to have the highest common dolphin bycatch. Our results were consistent with independent estimates of common dolphin bycatch from strandings. Our method show cases how non-representative observer data can nevertheless be analysed to estimate fishing duration, bycatch risk and, ultimately, the number of bycaught dolphins. These weekly-estimates improve upon current knowledge of the nature of common dolphin bycatch and can be used to inform management and policy decisions at a finer spatio-temporal scale than has been possible to date. Our results suggest that limiting haul duration, especially in winter, could serve as an effective mitigation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.