Remote sensing of coronal and heliospheric periodicities can provide vital insight into the local conditions and dynamics of the solar atmosphere. We seek to trace long (one hour or longer) periodic oscillatory signatures (previously identified above the limb in the corona by, e.g., Telloni et al. in Astrophys. J. 767, 138, 2013) from their origin at the solar surface out into the heliosphere. To do this, we combined on-disk measurements taken by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and concurrent extreme ultra-violet (EUV) and coronagraph data from one of the Solar Terrestrial Relations Observatory (STEREO) spacecraft to study the evolution of two active regions in the vicinity of an equatorial coronal hole over several days in early 2011. Fourier and wavelet analysis of signals were performed. Applying white-noise-based confidence levels to the power spectra associated with detrended intensity time series yields detections of oscillatory signatures with periods from 6 -13 hours in both AIA and STEREO data. As was found by Telloni et al. (2013), these signatures are aligned with local magnetic structures. However, typical spectral power densities all vary substantially as a function of period, indicating spectra dominated by red (rather than white) noise. Contrary to the white-noise-based results, applying global confidence levels based on a generic backgroundnoise model (allowing a combination of white noise, red noise, and transients following Auchère et al. in Astrophys. J. 825, 110, 2016) without detrending the time series uncovers only sporadic, spatially uncorrelated evidence of periodic signatures in either instrument. Automating this method to individual pixels in the STEREO/COR coronagraph field of view is non-trivial. Efforts to identify and implement a more robust automatic background noise model fitting procedure are needed.B J. Threlfall
Recent advances in wide-angle imaging by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and more recently by the Heliospheric Imagers (HI) aboard NASA's Solar TErrestrial RElations Observatory (STEREO), have enabled solar wind transients to be imaged and tracked from the Sun to 1 AU and beyond. In this paper we consider two of the techniques that have been used to determine the propagation characteristics of solar wind transients based on single-spacecraft observations, in particular propagation direction and radial speed. These techniques usually assume that the observing spacecraft remains stationary for the duration of observation of the solar wind transient. We determine the inaccuracy introduced by this assumption for the two STEREO spacecraft and find that it can be significant, and it can lead to an overestimation of the transient velocity as seen from STEREO-A and an underestimation as seen by STEREO-B. This has implications for the prediction or solar wind transients at 1 AU and hence is important for the study of space weather.
NASA's Solar Terrestrial Relations Observatory (STEREO) mission has coincided with a pronounced solar minimum. This allowed for easier detection of corotating interaction regions (CIRs). CIRs are formed by the interaction between fast and slow solarwind streams ejected from source regions on the solar surface that rotate with the Sun. High-density plasma blobs that have become entrained at the stream interface can be tracked out to large elongations in data from the Heliospheric Imager (HI) instruments onboard STEREO. These blobs act as tracers of the CIR itself such that their HI signatures can be used to estimate CIR source location and radial speed. We estimate the kinematic properties of solar-wind transients associated with 40 CIRs detected by the HI instrument onboard the STEREO-A spacecraft between 2007 and 2010. We identify in-situ signatures of these transients at L1 using the Advanced Composition Explorer (ACE) and compare the in-situ parameters with the HI results. We note that solar-wind transients associated with CIRs appear to travel at or close to the slow solar-wind speed preceding the event as measured in situ. We also highlight limitations in the commonly used analysis techniques of solar-wind transients by considering variability in the solar wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.