Lipophosphoglycan (LPG) is an amphiphile produced by Leishmania. Its chemical structure consists of a hydrophilic flexible polymer of repeating PO4-6Gal beta 1-4Man alpha 1 units (on average 16 units) linked via a hexasaccharide core to a lyso-1-O-alkyl-P1 membrane anchor. In the study of viral fusion we report in this paper, we have introduced LPG into human erythrocyte ghost (HEG) membranes, with the purpose of understanding how the LPG-induced surface-structural changes may modulate the interactions between a viral envelope and the HEG membranes. We have found that LPG, when incorporated at very low concentrations into intact human erythrocyte membranes, strongly inhibits Sendai virus-induced hemolysis. When incorporated into HEGs, it reduces the binding of both Sendai and influenza viruses to HEGs; furthermore, it strongly inhibits the overall viral fusion to HEGs, being among the most potent known inhibitors. We have also shown that LPG stabilizes the bilayer structure of phosphatidylethanolamine against the formation of an inverted-hexagonal structure. We suggest that LPG may give rise to an effective "steric repulsion" between the viral and HEG membranes, thereby modulating some specific modes of interaction between viral-target membranes in the overall fusion process; LPG may also modulate the bending rigidity and the spontaneous curvature of the HEG membrane in the direction of making the destabilization and rearrangement of the underlying lipid bilayer more difficult.
The ability of lysophosphatidylcholine to inhibit membrane fusion at subsolubilizing concentrations (between 1 and 9 mol % with respect to the membrane lipids) was examined. Fusion between N-methyldioleoylphosphatidylethanolamine (DOPE) large unilamellar vesicles (LUV) and fusion between Sendai virus and N-methyl-DOPE LUV were measured. A contents mixing fusion assay was used for LUV fusion (ANTS/DPX), and a lipid mixing assay (octadecylrhodamine B) was used for the virus fusion experiments. Lysophosphatidylcholine was effective at inhibiting both LUV fusion and Sendai virus/LUV fusion. Lysophosphatidylcholine also inhibited leakage from N-methyl-DOPE LUV, 31P nuclear magnetic resonance data were obtained of N-methyl-DOPE in the presence of lysophosphatidylcholine. Lysophosphatidylcholine stabilized the lamellar phase and reduced the incidence of nonlamellar structures at all temperatures. The destabilization of nonlamellar structures with a negative radius of curvature may be a mechanism for inhibition of fusion by lysophosphatidylcholine in these systems.
The characteristics of fusion of respiratory syncytial virus (RSV) with HEp-2 cells were studied by the R18 fluorescence dequenching assay of membrane fusion. A gradual increase in fluorescence intensity indicative of virion-cell fusion was observed when R18-labeled RSV was incubated with HEp-2 cells. Approximately 35% dequenching of the probe fluorescence was observed in 1 h at 37 degrees C. Fusion showed a temperature dependence, with significant dequenching occurring above 18 degrees C. The dequenching was also dependent on the relative concentration of target membrane. Thus, increasing the concentration of target membrane resulted in increased levels of dequenching. In addition, viral glycoproteins were shown to be involved in this interaction, since dequenching was significantly reduced by pretreatment of labeled virus at 70 degrees C for 5 min or by trypsinization of R18-labeled virions prior to incubation with HEp-2 cells at 37 degrees C. The fusion of RSV with HEp-2 cells was unaffected over a pH range of 5.5 to 8.5, with some increase seen at lower pH values. Treatment of HEp-2 cells with ammonium chloride (20 and 10 mM), a lysosomotropic agent, during early stages of infection did not inhibit syncytium formation or progeny virion production by RSV. At the same concentrations of ammonium chloride, the production of vesicular stomatitis virus was reduced approximately 4 log10 units. These results suggest that fusion of the virus with the cell surface plasma membrane is the principal route of entry.
An analysis of the R18 fusion assay was made during the fusion of the Sendai virus with erythrocyte ghosts. The increase in R18 fluorescence, reflecting the interaction process, was evaluated in terms of the different processes that in principle may contribute to this increase, that is, monomeric probe transfer, hemifusion, and complete fusion. To this end, the kinetics of the R18-labeled lipid mixing were compared to those obtained with an assay in which the fusion-monitoring probe, eosin-maleimide, was attached to the viral surface proteins. The experiments relied on the use of native and fusion-inactive viruses and studies involving viral and target membranes that were modified by the incorporation of the lysophospholipid. The total dequenching signal detected in the R18 assay consists of components from probe transferred without fusion and from fusion itself. At 37 degrees C, the initial rate of dequenching (within two minutes) was predominately from the probe diluted by fusion with little contribution from transfer. The dequenching signal due to the probe transfer without fusion occurred at temperatures as low as 10 degrees C and increased linearly with time. Complete fusion started at about 20-25 degrees C and increased sharply at 30 degrees C. The extent of hemifusion was deduced from the total R18 dequenching data and those of the eosin-maleimide labeled protein dilution method for the limiting cases; the analysis indicates that hemifusion started at about 15 degrees C and increased over the range 20-25 degrees C. The initial rate of dequenching of the R18 assay measured within 2 min gives an accurate measure of membrane fusion above 30 degrees C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.