The photon counting histogram (PCH) analysis is a fluorescence fluctuation method that is able to characterize the brightness and concentration of different fluorescent species present in a liquid sample. We find that the PCH model using a three-dimensional Gaussian observation volume profile is inadequate for fitting experimental data obtained from a confocal setup with one-photon excitation. We propose an imoroved model, which is based on the correction to the observation volume profile for the out-of-focus emission. We demonstrate that this model is able to resolve different species present under a wide range of conditions. Attention is given to how this model allows the examination of the effects of different instrumental setups on the resolvability.
Biologically functional cationic phospholipid-gold nanoplasmonic carriers have been designed to simultaneously exhibit carrier capabilities, demonstrate improved colloidal stability, and show no cytotoxicity under physiological conditions. Cargo, such as RNA, DNA, proteins, or drugs, can be adsorbed onto or incorporated into the cationic phospholipid bilayer membrane. These carriers are able to retain their unique nanoscale optical properties under physiological conditions, making them particularly useful in a wide range of imaging, therapeutic, and gene delivery applications that utilize selective nanoplasmonic properties.
We have extended the principle of optical tweezers as a noninvasive technique to actively sort hydrodynamically focused cells based on their fluorescence signal in a microfluidic device. This micro fluorescence-activated cell sorter (microFACS) uses an infrared laser to laterally deflect cells into a collection channel. Green-labeled macrophages were sorted from a 40/60 ratio mixture at a throughput of 22 cells/s over 30 min achieving a 93% sorting purity and a 60% recovery yield. To rule out potential photoinduced cell damage during optical deflection, we investigated the response of mouse macrophage to brief exposures (<4 ms) of focused 1064-nm laser light (9.6 W at the sample). We found no significant difference in viability, cell proliferation, activation state, and functionality between infrared-exposed and unexposed cells. Activation state was measured by the phosphorylation of ERK and nuclear translocation of NF-kappaB, while functionality was assessed in a similar manner, but after a lipopolysaccharide challenge. To demonstrate the selective nature of optical sorting, we isolated a subpopulation of macrophages highly infected with the fluorescently labeled pathogen Francisella tularensis subsp. novicida. A total of 10,738 infected cells were sorted at a throughput of 11 cells/s with 93% purity and 39% recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.