A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.
K-Cl cotransporters (KCC) play fundamental roles in ionic and osmotic homeostasis. To date, four mammalian KCC genes have been identified. KCC2 is expressed exclusively in neurons. Injection of Xenopus oocytes with KCC2 cRNA induced a 20-fold increase in Cl(-)-dependent, furosemide-sensitive K(+) uptake. Oocyte swelling increased KCC2 activity 2-3 fold. A canonical tyrosine phosphorylation site is located in the carboxy termini of KCC2 (R1081-Y1087) and KCC4, but not in other KCC isoforms. Pharmacological studies, however, revealed no regulatory role for phosphorylation of KCC2 tyrosine residues. Replacement of Y1087 with aspartate or arginine dramatically reduced K(+) uptake under isotonic and hypotonic conditions. Normal or near-normal cotransporter activity was observed when Y1087 was mutated to phenylalanine, alanine, or isoleucine. A tyrosine residue equivalent to Y1087 is conserved in all identified KCCs from nematodes to humans. Mutation of the Y1087 congener in KCC1 to aspartate also dramatically inhibited cotransporter activity. Taken together, these results suggest that replacement of Y1087 and its congeners with charged residues disrupts the conformational state of the carboxy terminus. We postulate that the carboxy terminus plays an essential role in maintaining the functional conformation of KCC cotransporters and/or is involved in essential regulatory protein-protein interactions.
. A divergent CFTR homologue: highly regulated salt transport in the euryhaline teleost F. heteroclitus. Am. J. Physiol. 274 (Cell Physiol. 43): C715-C723, 1998.-The killifish, Fundulus heteroclitus, is a euryhaline teleost fish capable of adapting rapidly to transfer from freshwater (FW) to four times seawater (SW). To investigate osmoregulation at a molecular level, a 5.7-kilobase cDNA homologous to human cystic fibrosis transmembrane conductance regulator (hCFTR) was isolated from a gill cDNA library from SW-adapted killifish. This cDNA encodes a protein product (kfCFTR) that is 59% identical to hCFTR, the most divergent form of CFTR characterized to date. Expression of kfCFTR in Xenopus oocytes generated adenosine 3Ј,5Ј-cyclic monophosphate-activated, Cl Ϫ -selective currents similar to those generated by hCFTR. In SW-adapted killifish, kfCFTR was expressed at high levels in the gill, opercular epithelium, and intestine. After abrupt exposure of FWadapted killifish to SW, kfCFTR expression in the gill increased severalfold, suggesting a role for kfCFTR in salinity adaptation. Under similar conditions, plasma Na ϩ levels rose significantly after 8 h and then fell, although it is not known whether these changes are directly responsible for the changes in kfCFTR expression. The killifish provides a unique opportunity to understand teleost osmoregulation and the role of CFTR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.