We study synchronization in delay-coupled oscillator networks using a master stability function approach. Within a generic model of Stuart-Landau oscillators (normal form of supercritical or subcritical Hopf bifurcation), we derive analytical stability conditions and demonstrate that by tuning the coupling phase one can easily control the stability of synchronous periodic states. We propose the coupling phase as a crucial control parameter to switch between in-phase synchronization or desynchronization for general network topologies or between in-phase, cluster, or splay states in unidirectional rings. Our results are robust even for slightly nonidentical elements of the network.
We investigate the stability of synchronized states in delay-coupled networks where synchronization takes place in groups of different local dynamics or in cluster states in networks with identical local dynamics. Using a master stability approach, we find that the master stability function shows a discrete rotational symmetry depending on the number of groups. The coupling matrices that permit solutions on group or cluster synchronization manifolds show a very similar symmetry in their eigenvalue spectrum, which helps to simplify the evaluation of the master stability function. Our theory allows for the characterization of stability of different patterns of synchronized dynamics in networks with multiple delay times, multiple coupling functions, but also with multiple kinds of local dynamics in the networks' nodes. We illustrate our results by calculating stability in the example of delay-coupled semiconductor lasers and in a model for neuronal spiking dynamics.
Stability of synchronization in delay-coupled networks of identical units generally depends in a complicated way on the coupling topology. We show that for large coupling delays synchronizability relates in a simple way to the spectral properties of the network topology. The master stability function used to determine the stability of synchronous solutions has a universal structure in the limit of large delay: It is rotationally symmetric around the origin and increases monotonically with the radius in the complex plane. This allows a universal classification of networks with respect to their synchronization properties and solves the problem of complete synchronization in networks with strongly delayed coupling.
We study chaotic synchronization in networks with time-delayed coupling. We introduce the notion of strong and weak chaos, distinguished by the scaling properties of the maximum Lyapunov exponent within the synchronization manifold for large delay times, and relate this to the condition for stable or unstable chaotic synchronization, respectively. In simulations of laser models and experiments with electronic circuits, we identify transitions from weak to strong and back to weak chaos upon monotonically increasing the coupling strength.
Time-delayed feedback methods can be used to control unstable periodic orbits as well as unstable steady states. We present an application of extended time delay autosynchronization introduced by Socolar et al. to an unstable focus. This system represents a generic model of an unstable steady state which can be found for instance in a Hopf bifurcation. In addition to the original controller design, we investigate effects of control loop latency and a bandpass filter on the domain of control. Furthermore, we consider coupling of the control force to the system via a rotational coupling matrix parametrized by a variable phase. We present an analysis of the domain of control and support our results by numerical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.