The detection of oil spills in water is a frequently researched area, but most of the research has been based on very large patches of crude oil on offshore areas. We present a novel framework for detecting oil spills inside a port environment, while using unmanned areal vehicles (UAV) and a thermal infrared (IR) camera. This framework is split into a training part and an operational part. In the training part, we present a process for automatically annotating RGB images and matching them with the IR images in order to create a dataset. The infrared imaging camera is crucial to be able to detect oil spills during nighttime. This dataset is then used to train on a convolutional neural network (CNN). Seven different CNN segmentation architectures and eight different feature extractors are tested in order to find the best suited combination for this task. In the operational part, we propose a method to have a real-time, onboard UAV oil spill detection using the pre-trained network and a low power interference device. A controlled experiment in the port of Antwerp showed that we are able to achieve an accuracy of 89% while only using the IR camera.
In this study, we propose a new method to identify corrosion minerals in carbon steel using hyperspectral imaging (HSI) in the shortwave infrared range (900–1700 nm). Seven samples were artificially corroded using a neutral salt spray test and examined using a hyperspectral camera. A normalized cross-correlation algorithm is used to identify four different corrosion minerals (goethite, magnetite, lepidocrocite and hematite), using reference spectra. A Fourier Transform Infrared spectrometer (FTIR) analysis of the scraped corrosion powders was used as a ground truth to validate the results obtained by the hyperspectral camera. This comparison shows that the HSI technique effectively detects the dominant mineral present in the samples. In addition, HSI can also accurately predict the changes in mineral composition that occur over time.
In this article, we report the use of a Confocal Laser Scanning Microscope (CLSM) to apply a qualitative assessment of atmospheric corrosion on steel samples. From the CLSM, we obtain high-resolution images, together with a 3D heightmap. The performance of four different segmentation algorithms that use the high-resolution images as input is qualitatively assessed and discussed. A novel 3D segmentation algorithm based on the shape index is presented and compared to the 2D segmentation algorithms. From this analysis, we conclude that there is a significant difference in performance between the 2D segmentation algorithms and that the 3D method can be an added value to the detection of corrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.