A new concept to build shape memory polymers (SMP) combining outstanding fixity and recovery ratios (both above 99% after only one training cycle) typical of chemically crosslinked SMPs with reprocessability restricted to physically crosslinked SMPs is demonstrated by covalently bonding, through thermoreversible Diels-Alder (DA) adducts, star-shaped poly(ε-caprolactones) (PCL) end-functionalized by furan and maleimide moieties. A PCL network is easily prepared by melt-blending complementary end-functional star polymers in retro DA regime, then by curing at lower temperature to favour the DA cycloaddition. Such covalent network can be reprocessed when heated again at the retro DA temperature. The resulting SMP shows still excellent shape memory properties attesting for its good recyclability.
Hyperbranched and star shaped polymers have raised tremendous interest because of their unusual structural and photochemical properties, which provide them potent applications in various domains, namely in the biomedical field. In this context, the development of adequate tools aiming to probe particular three-dimensional features of such polymers is of crucial importance. In this present work, ion mobility coupled with mass spectrometry was used to experimentally derive structural information related to cationized linear and star shaped poly-ε-caprolactones as a function of their charge state and chain length. Two major conformations were observed and identified using theoretical modeling: (1) near spherical conformations whose sizes are invariant with the polymer topology for long and lightly charged chains and (2) elongated conformations whose sizes vary with the polymer topology for short and highly charged chains. These conformations were further confirmed by collisional activation experiments based on the ejection thresholds of the coordinated cations that vary according to the elongation amplitude of the polymer chains. Finally, a comparison between solution and gas-phase conformations highlights a compaction of the structure with a loss of specific chain arrangements during the ionization and desolvation steps of the electrospray process, fueling the long-time debated question related to the preservation of the analyte structure during the transfer into the mass spectrometer.
Star-shaped poly( ε -caprolactone)s are functionalized by various dienes (furan and anthracene) and a dienophile (maleimide), and the kinetics of network formation by melt-blending is compared for both Diels-Alder adducts. When curing at 60 ° C, the anthracene-maleimide network forms more rapidly and gives rise to a more crosslinked material than with the furan-maleimide adduct. Shape-memory properties of the networks are compared in terms of Diels-Alder adduct stability. Both materials exhibit excellent fi xity and recovery ratios, but the relatively low retro Diels-Alder temperature of the furanmaleimide adduct perturbs the mechanical stability of the network during cyclic tensile testing between 0 and 60 ° C, whereas the anthracene-maleimide adduct is shown to be stable up to 150 ° C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.