The cause of Crohn's disease is unknown, although alterations in intestinal permeability may play a primary role. Because we were interested in permeability changes that occur before the onset of intestinal inflammation, we took advantage of the known genetic predisposition to this disease and studied not only patients with Crohn's disease, but their clinically unaffected relatives as well. Intestinal permeability was assessed using the marker polyethylene glycol-400 ingested with a standard meal. We found that 17 normal volunteers absorbed 215 +/- 29.6 mg (mean +/- SE), whereas 11 patients with Crohn's disease absorbed 514 +/- 94.7 mg and their 32 healthy relatives absorbed 566 +/- 62.4 mg. The twofold increase in permeability of patients and their relatives (p less than 0.005 compared with controls) indicates that the intestinal defect in the ability to exclude larger sized molecules is not secondary to clinically recognized intestinal inflammation, but is a primary defect that may be an etiologic factor in this disease.
We determined the effects of lopinavir/ritonavir on tenofovir renal clearance. Human immunodeficiency virus-infected subjects taking tenofovir disoproxil fumarate (TDF) were matched on age, race, and gender and were enrolled into one of the following two groups: group 1: subjects taking TDF plus lopinavir/ritonavir plus other nucleoside reverse transcriptase inhibitors (NRTIs); group 2: subjects taking TDF plus NRTIs and/or non-NRTIs but no protease inhibitors. Twenty-four-hour blood and urine collections were carried out in subjects for tenofovir quantification. Drug transporter genotype associations with tenofovir pharmacokinetics were examined. In 30 subjects, median (range) tenofovir apparent oral clearance, renal clearance, and fraction excreted in urine were 34.6 l/h (20.6-89.5), 11.3 l/h (6.2-22.6), and 0.33 (0.23-0.5), respectively. After adjusting for renal function, tenofovir renal clearance was 17.5% slower (P=0.04) in subjects taking lopinavir/ritonavir versus those not taking a protease inhibitor, consistent with a renal interaction between these drugs. Future studies should clarify the exact mechanism and whether there is an increased risk of nephrotoxicity.
An LC/MS/MS assay we published for tenofovir (TFV) plasma levels is a useful tool for monitoring the pharmacotherapy of HIV-positive individuals (J. Chromatography B 830, 6-12, 2006). A new combination therapy consisting of the TFV pro-drug (300 mg) and another reverse transcriptase inhibitor, emtricitabine (FTC, 200 mg) has become available in a convenient once-daily dosage form (Truvada). This widely used medication has prompted us to develop and validate a convenient assay to determine simultaneously TFV and FTC plasma concentrations. In view of their chemical similarity to the analytes, stable isotope internal standards (IS) were chosen. These consisted of TFV labeled uniformly with 13 C in the adenine moiety (Iso-TFV) and FTC labeled with 13 C and 15 N in the cytosine moiety (Iso-FTC). Trifluoroacetic acid was added to the patient's EDTA plasma (containing the IS) to produce a de-proteinated extract after high speed centrifugation. The extracts were directly injected into the mobile phase (3% acetonitrile/1% acetic acid, aq.) stream flowing at 200 μL/min. A Synergi Polar-RP, 2.0 x 150mm, reversed-phase analytical column was used to achieve the chromatographic separation. Detection of the analytes was achieved by ESI positive ionization tandem mass spectrometry. The precursor/product transitions (m/z) in the positive ion mode were 288/176 and 293/181 ions for TFV and Iso-TFV, respectively and the precursor/ product transitions (m/z) were 248/130 and 251/133 ions for FTC and Iso-FTC, respectively. When the analyte/IS abundance ratios were plotted against the specified concentrations, the linearity of the concentration curves were in the range 10 ng/mL to 1500 ng/mL for both analytes (250 μL plasma extracted), with a minimum quantifiable limit of 10 ng/mL for both analytes. The inter-and intraday accuracy and precision for both TFV and FTC were within ±20% at the LLOQ and ±15% at the other QC levels. We have expanded the method originally designed for the assay of TFV alone to incorporate the simultaneous determination of the latter and FTC using stable isotope IS. This assay has been successfully used for the periodic monitoring of 678 HIV-positive patients being treated with the combination therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.