Colorectal carcinogenesis (CRC) imposes a major health burden in developing countries. It is the third major cause of cancer deaths. Despite several treatment strategies, novel drugs are warranted to reduce the severity of this disease. Adenomatous polyps in the colon are the major culprits in CRC and found in 45% of cancers, especially in patients 60 years of age. Inflammatory polyps are currently gaining attention in CRC, and a growing body of evidence denotes the role of inflammation in CRC. Several experimental models are being employed to investigate CRC in animals, which include the APCmin/+ mouse model, Azoxymethane, Dimethyl hydrazine, and a combination of Dextran sodium sulphate and dimethyl hydrazine. During CRC progression, several signal transduction pathways are activated. Among the major signal transduction pathways are p53, Transforming growth factor beta, Wnt/β-catenin, Delta Notch, Hippo signalling, nuclear factor erythroid 2-related factor 2 and Kelch-like ECH-associated protein 1 pathways. These signalling pathways collaborate with cell death mechanisms, which include apoptosis, necroptosis and autophagy, to determine cell fate. Extensive research has been carried out in our laboratory to investigate these signal transduction and cell death mechanistic pathways in CRC. This review summarizes CRC pathogenesis and the related cell death and signal transduction pathways.
The respiratory disease pulmonary fibrosis (PF), which is characterized by scar formation throughout the lung, imposes a serious health burden. No effective drug without side effects has been proven to prevent this fatal lung disease. In this context, this study was undertaken to elucidate the protective effect of celastrol, a quinine methide pentacyclic triterpenoid from a Chinese medicinal plant 'thunder god vine' against bleomycin (BLM)-induced PF. We also attempted to study how the cytokine transforming growth factor-β (TGF-β) stimulates fibrosis through the induction of epithelial-mesenchymal transition (EMT) and the role of celastrol in regulating EMT. TGF-β (5 ng/ml) was administered to human alveolar epithelial adenocarcinoma A549 cells to induce fibrotic response in cells. Induction of EMT was analysed in cells through morphological analysis and expression of epithelial and mesenchymal markers by Western blotting. Bleomycin at a concentration of 3 U/Kg b.w was used to induce fibrosis in adult male rat lungs. Celastrol (5 mg/kg b.w) was given to rats twice a week after BLM administration for a period of 28 days. Western blot and immunofluorescence analyses were performed with lung tissue sample to find out the potential of celastrol in regulating EMT during the progression of fibrosis. TGF-β induces EMT in A549 cells as demonstrated by changes in epithelial cell morphology and expression of epithelial and mesenchymal marker proteins. The expressions of epithelial marker proteins E-cadherin and claudin were found to be reduced in the BLM-induced group of rats. Expression of mesenchymal markers, such as N-cadherin, snail, slug, vimentin and β-catenin, was enhanced in BLM-induced rat lungs. Celastrol reverts these cellular changes in rat lungs, and it was found that celastrol regulates EMT through the inhibition of heat shock protein 90 (HSP 90). Together, the results indicate that EMT is a crucial phenomenon for the progression of fibrosis, and celastrol provides protection against PF through the regulation of EMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.