Changes of direction (CODs) are key manoeuvres linked to decisive moments in sport and are also key actions associated with lower limb injuries. During sport athletes perform a diverse range of CODs, from various approach velocities and angles, thus the ability to change direction safely and quickly is of great interest. To our knowledge, a comprehensive review examining the influence of angle and velocity on change of direction (COD) biomechanics does not exist. Findings of previous research indicate the biomechanical demands of CODs are ‘angle’ and ‘velocity’ dependent and are both critical factors that affect the technical execution of directional changes, deceleration and reacceleration requirements, knee joint loading, and lower limb muscle activity. Thus, these two factors regulate the progression and regression in COD intensity. Specifically, faster and sharper CODs elevate the relative risk of injury due to the greater associative knee joint loading; however, faster and sharper directional changes are key manoeuvres for successful performance in multidirectional sport, which subsequently creates a ‘performance-injury conflict’ for practitioners and athletes. This conflict, however, may be mediated by an athlete’s physical capacity (i.e. ability to rapidly produce force and neuromuscular control). Furthermore, an ‘angle-velocity trade-off’ exists during CODs, whereby faster approaches compromise the execution of the intended COD; this is influenced by an athlete’s physical capacity. Therefore, practitioners and researchers should acknowledge and understand the implications of angle and velocity on COD biomechanics when: (1) interpreting biomechanical research; (2) coaching COD technique; (3) designing and prescribing COD training and injury reduction programs; (4) conditioning athletes to tolerate the physical demands of directional changes; (5) screening COD technique; and (6) progressing and regressing COD intensity, specifically when working with novice or previously injured athletes rehabilitating from an injury.
Dos'Santos, T, Thomas, C, Jones, PA, and Comfort, P. Mechanical determinants of faster change of direction speed performance in male athletes. J Strength Cond Res 31(3): 696-705, 2017-Mechanical variables during change of directions, for example, braking and propulsive forces, impulses, and ground contact times (GCT) have been identified as determinants of faster change of direction speed (CODS) performance. The purpose of this study was to investigate the mechanical determinants of 180° CODS performance with mechanical characteristic comparisons between faster and slower performers; while exploring the role of the penultimate foot contact (PEN) during the change of direction. Forty multidirectional male athletes performed 6 modified 505 (mod505) trials (3 left and right), and ground reaction forces were collected across the PEN and final foot contact (FINAL) during the change of direction. Pearson's correlation coefficients and coefficients of determination were used to explore the relationship between mechanical variables and mod505 completion time. Independent T-tests and Cohen's d effect sizes (ES) were conducted between faster (n = 10) and slower (n = 10) mod505 performers to explore differences in mechanical variables. Faster CODS performance was associated (p ≤ 0.05) with shorter GCTs (r = 0.701-0.757), greater horizontal propulsive forces (HPF) (r = -0.572 to -0.611), greater horizontal braking forces (HBF) in the PEN (r = -0.337), lower HBF ratios (r = -0.429), and lower FINAL vertical impact forces (VIF) (r = 0.449-0.559). Faster athletes demonstrated significantly (p ≤ 0.05, ES = 1.08-2.54) shorter FINAL GCTs, produced lower VIF, lower HBF ratios, and greater HPF in comparison to slower athletes. These findings suggest that different mechanical properties are required to produce faster CODS performance, with differences in mechanical properties observed between fast and slower performers. Furthermore, applying a greater proportion of braking force during the PEN relative to the FINAL may be advantageous for turning performance.
Previous studies have reported an association between eccentric strength (ECC-STR) and change of direction (COD) ability. Little is known about how ECC-STR facilitates COD maneuvers. The aim of this study was to examine the role of ECC-STR during a 180° COD task in 18 female soccer players. Each player performed six trials of a 180° COD task whereby three-dimensional motion data from 10 Qualisys Pro-Reflex infrared cameras (240 Hz) and ground reaction forces (GRFs) from two AMTI force platforms (1200 Hz) were collected. Relative eccentric knee extensor (ECC-EXT) and flexor (ECC-FLEX) peak torque was collected from both limbs at 60°·s−1 using a Kin Com isokinetic dynamometer. Large correlations were revealed between COD performance (time to complete 5 m approach, 180° turn, 5 m return) and ECC-EXT (R = −0.674) and ECC-FLEX (R = −0.603). Moderate to large correlations were observed between approach velocity (AV) and COD performance (R = −0.484) and ECC-EXT (R = 0.724). Stronger participants (n = 9) recorded significantly (p < 0.05) faster AV (4.01 ± 0.18 vs. 3.74 ± 0.24 m·s−1, d = 1.27) and a greater reduction in velocity (−1.55 ± 0.17 vs. −1.37 ± 0.21 m·s−1, d = −0.94) during penultimate contact than weaker (n = 9) subjects. Greater ECC-STR is associated with faster COD performance in female soccer players, as stronger players are better able to decelerate during penultimate contact from faster approach velocities.
The isometric mid-thigh pull (IMTP) is commonly used to assess an athlete's force generation ability. This test is highly reliable and is simple and relatively quick to perform. The data that can be determined from the force-time curves generated by the test have been shown to be closely related to performance capacities in a variety of dynamic athletic tasks. However, within the scientific literature there are inconsistencies in the data collection procedures and methods used for data analysis that may impact the resultant output and the ability to compare and generalize results. Therefore, the primary aim of this review is to identify the differences in IMTP testing procedures and data analysis techniques, while identifying the potential impact this may have on the data collected. The secondary aim is to provide recommendations for the standardization of testing procedures to ensure that future IMTP data is of maximal benefit to practitioners and researchers.
The aims of this study were to quantify asymmetries in change of direction (COD) performance via completion time and COD deficit, and determine its influence on asymmetry profiling of COD ability. A secondary aim was to evaluate the relationship between linear speed, 505 time and COD deficit. Forty-three youth netball athletes (age: 15.4 ± 1.1 years, height: 1.71 ± 0.06 m, mass: 63.3 ± 6.6 kg) performed the 505 for both left and right limbs and a 10 m sprint test. Asymmetries in 505 completion time and COD deficit were quantified for dominant (D) (faster) and non-dominant (ND) (slower) directions. Paired sample t-tests revealed significant differences between D and ND directions for 505 time and COD deficit (p < 0.0001, g = -0.53 to -0.60). Substantially greater asymmetries for COD deficit were observed compared to 505 time (p < 0.0001, g = 1.03). Only two subjects displayed an asymmetry ≥10% based on 505 times. Conversely, based on COD deficit, 21 subjects demonstrated asymmetries ≥10%. Large significant associations were observed between 505 time and COD deficit (r = 0.500-0.593, p ≤ 0.002). Large significant inverse associations were demonstrated between 10 m sprint time and COD deficit (r = -0.539 to -0.633, p ≤ 0.001) indicating faster athletes had longer COD deficits. Nine subjects were classified differently for COD ability when comparing standardized scores for 505 time versus COD deficit. Quantification of asymmetries in COD ability should be based on COD deficits; inspection of 505 times only could lead to misinterpretations of an athlete's COD symmetry and COD ability. Faster youth netball athletes demonstrate longer COD deficits, thus, researchers and practitioners are encouraged to improve their youth netball athletes' ability to rapidly decelerate, change direction and reaccelerate from 180° turns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.