Abstract-We perform a game theoretic investigation of the effects of deception on the interactions between an attacker and a defender of a computer network. The defender can employ camouflage by either disguising a normal system as a honeypot, or by disguising a honeypot as a normal system. We model the interactions between defender and attacker using a signaling game, a non-cooperative two player dynamic game of incomplete information. For this model, we determine which strategies admit perfect Bayesian equilibria. These equilibria are refined Nash equilibria in which neither the defender nor the attacker will unilaterally choose to deviate from their strategies. We discuss the benefits of employing deceptive equilibrium strategies in the defense of a computer network.
Address shuffling is a type of moving target defense that prevents an attacker from reliably contacting a system by periodically remapping network addresses. Although limited testing has demonstrated it to be effective, little research has been conducted to examine the theoretical limits of address shuffling. As a result, it is difficult to understand how effective shuffling is and under what circumstances it is a viable moving target defense. This paper introduces probabilistic models that can provide insight into the performance of address shuffling. These models quantify the probability of attacker success in terms of network size, quantity of addresses scanned, quantity of vulnerable systems, and the frequency of shuffling. Theoretical analysis shows that shuffling is an acceptable defense if there is a small population of vulnerable systems within a large network address space, however shuffling has a cost for legitimate users. These results will also be shown empirically using simulation and actual traffic traces.
The O(1D) + H2 → OH + H reaction has been studied with a time-dependent wave packet method for total angular momenta J = 1, 2, 5, 10, 15, 20, and 30. Total reaction probabilities from calculations in which the Coriolis coupling terms (CC) in the Hamiltonian are included are compared with those from calculations in which the Helicity−Conserving (HC) approximation is employed. The calculations were performed combining a real wave packet method with the Coriolis-coupled method on parallel computers. At low values of J, the CC reaction probabilities are somewhat smaller than the HC results; the agreement between the two methods improves, however, as J increases. For this reaction, the HC approximation should yield accurate estimates of the reaction cross section and rate constants. However, because reactive collisions involve a high degree of Coriolis mixing, it is very likely that inclusion of these terms will affect calculation of less averaged quantities such as the differential cross section or OH internal energy distributions.
Flexibility from residential loads presents an enormous potential to provide various services to the smart grid. In this paper, we propose a unified hierarchical framework for aggregation and coordination of various residential loads in a smart community, such as Thermostatically Controlled Loads (TCLs), Distributed Energy Storages (DESs), residential Pool Pumps (PPs), and Electric Vehicles (EVs). A central idea of this framework is a virtual battery model, which provides a simple and intuitive tool to aggregate the flexibility of distributed residential loads. Moreover, a multi-stage Nash-bargainingbased coordination strategy is proposed to coordinate different aggregations of flexible loads for demand response. Case studies are provided to demonstrate the efficacy of our proposed framework and coordination strategy in managing peak power demand in a smart residential community.
Abstract-We perform a game theoretic investigation of the effects of deception on the interactions between an attacker and a defender of a computer network. The defender can employ camouflage by either disguising a normal system as a honeypot, or by disguising a honeypot as a normal system. We model the interactions between defender and attacker using a signaling game, a non-cooperative two player dynamic game of incomplete information. For this model, we determine which strategies admit perfect Bayesian equilibria. These equilibria are refined Nash equilibria in which neither the defender nor the attacker will unilaterally choose to deviate from their strategies. We discuss the benefits of employing deceptive equilibrium strategies in the defense of a computer network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.