The field of nuclear astrophysics is devoted to the study of the creation of the chemical elements. By nature, it is deeply intertwined with the physics of the Sun. The nuclear reactions of the proton-proton cycle of hydrogen burning, including the 3 He(α,γ) 7 Be reaction, provide the necessary nuclear energy to prevent the gravitational collapse of the Sun and give rise to the by now wellstudied pp, 7 Be, and 8 B solar neutrinos. The not yet measured flux of 13 N, 15 O, and 17 F neutrinos from the carbon-nitrogen-oxygen cycle is affected in rate by the 14 N(p,γ) 15 O reaction and in emission profile by the 12 C(p,γ) 13 N reaction. The nucleosynthetic output of the subsequent phase in stellar evolution, helium burning, is controlled by the 12 C(α,γ) 16 O reaction.In order to properly interpret the existing and upcoming solar neutrino data, precise nuclear physics information is needed. For nuclear reactions between light, stable nuclei, the best available technique are experiments with small ion accelerators in underground, low-background settings. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso/Italy, using a 0.4 MV accelerator.The present contribution reports on a higher-energy, 5.0 MV, underground accelerator in the Felsenkeller underground site in Dresden/Germany. Results from γ-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory for nuclear astrophysics purposes. The accelerator is in the commissioning phase and will provide intense, up to 50 µA, beams of 1 H + , 4 He + , and 12 C + ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.
Extreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and H 2 O systems, respectively. Here, we investigate a stoichiometric mixture of C and H 2 O by shock-compressing polyethylene terephthalate (PET) plastics and performing in situ x-ray probing. We observe diamond formation at pressures between 72 ± 7 and 125 ± 13 GPa at temperatures ranging from ~3500 to ~6000 K. Combining x-ray diffraction and small-angle x-ray scattering, we access the kinetics of this exotic reaction. The observed demixing of C and H 2 O suggests that diamond precipitation inside the ice giants is enhanced by oxygen, which can lead to isolated water and thus the formation of superionic structures relevant to the planets’ magnetic fields. Moreover, our measurements indicate a way of producing nanodiamonds by simple laser-driven shock compression of cheap PET plastics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.