We report application of electron spin−echo envelope modulation (ESEEM) spectroscopy to the problem of metal coordination environments in structured RNA molecules. ESEEM has been used in conjunction with 15N-guanosine labeling to identify nitrogen ligation to a Mn2+ site in a hammerhead ribozyme and in Mn2+−model guanosine monophosphate (GMP) complexes. Hammerhead ribozyme complexes consisting of a 34-nucleotide RNA enzyme strand annealed to a 13-nucleotide DNA substrate strand were poised in 1 M NaCl as a 1:1 complex with Mn2+, conditions previously determined to populate a single high-affinity Mn2+ site (Horton, T. E.; Clardy, R. D.; DeRose, V. J. Biochemistry 1998, 51, 18094−18108). Significant modulation of the electron spin−echo from several low-frequency features is detected for the natural-abundance, 14N-hammerhead samples. At 3600 G, the main hammerhead three-pulse ESEEM features arise at 0.6, 1.9, 2.5, and 5.2 MHz and are nearly identical for a Mn2+−GMP complex under the same conditions. For a ribozyme having 15N-guanosine incorporated into the enzyme strand, as well as for an 15N-labeled Mn2+−GMP complex, the modulation is completely altered and consists of one main feature at 3.4 MHz and a smaller feature at the ν n (15N) Larmor frequency of 1.6 MHz. Preliminary analysis of the ESEEM data reveals an apparent hyperfine coupling of A(14N) ∼ 2.3 MHz, similar to previously reported values for Mn2+ directly coordinated to histidine and imidazole. These data demonstrate the potential for ESEEM as a spectroscopic tool for metal ligand determination in structured RNA molecules.
A metal site in a 5'-GAAA-3' tetraloop, a stabilizing and phylogenetically conserved RNA motif, is explored using (31)P NMR spectroscopy and phosphorothioate modifications. Similar to previous reports [Legault, P., and Pardi, A. (1994) J. Magn. Reson., Ser. B 103, 82-86], the (31)P NMR spectrum of a 12-nucleotide stem-loop sequence 5'-GGCCGAAAGGCC-3' exhibits resolved features from each of the phosphodiester linkages. Titration with Mg(2+) results in distinct shifts of a subset of these (31)P features, which are assigned to phosphodiesters 5' to A6, A7, and G5. Titration with Co(NH(3))(6)(3+) causes only a slight upfield shift in the A6 feature, suggesting that changes caused by Mg(2+) are due to inner-sphere metal-phosphate coordination. R(p)-Phosphorothioate substitutions introduced enzymatically 5' to each of the three A residues of the tetraloop provide well-resolved (31)P NMR features that are observed to shift in the presence of Cd(2+) but not Mg(2+), again consistent with a metal-phosphate site. Analysis of (31)P NMR spectra using the sequence 5'-GGGCGAAAGUCC-3' with single phosphorothioate substitutions in the loop region, separated into R(p) and S(p) diastereomers, provides evidence for an inner-sphere interaction with the phosphate 5' to A7 but outer-sphere or structural effects that cause perturbations 5' to A6. Introduction of an R(p)-phosphorothioate 5' to A7 results in a distinct (31)P NMR spectrum, consistent with thermodynamic studies reported in the accompanying paper that indicate a unique structure caused by this substitution. On the basis of these results and existing structural information, a metal site in the 5'-GAAA-3' tetraloop is modeled using restrained molecular dynamics simulations.
Metal ions play key structural and functional roles in many nucleic acid systems, particularly as required cofactors for many catalytic RNA molecules (ribozymes). We apply the pulsed EPR technologies of electron spin-echo envelope modulation and electron spin-echo-electron nuclear double resonance to the structural analysis of the paramagnetic metal ion Mn(II) bound to nucleotides and nucleic acids. We demonstrate that pulsed EPR, supplemented with specific isotope labeling, can characterize ligation to nucleotide base nitrogens, outer-sphere interactions with phosphate groups, distances to sites of specific (2)H atom labels, and the hydration level of the metal ion. These techniques allow a comprehensive structural analysis of the mononucleotide model system MnGMP. Spectra of phenylalanine-specific transfer RNA from budding yeast and of the hammerhead ribozyme demonstrate the applicability of the methods to larger, structured RNA systems. This suite of experiments opens the way to detailed structural characterization of specifically bound metal ions in a variety of ribozymes and other nucleic acids of biological interest.
The effects of Co(NH(3))(6)(3+) on the hammerhead ribozyme are analyzed using several techniques, including activity measurements, electron paramagnetic resonance (EPR), and circular dichroism (CD) spectroscopies and thermal denaturation studies. Co(NH(3))(6)(3+) efficiently displaces Mn(2+) bound to the ribozyme with an apparent dissociation constant of K(d app) = 22 +/- 4.2 microM in 500 microM Mn(2+) (0.1 M NaCl). Displacement of Mn(2+) coincides with Co(NH(3))(6)(3+) inhibition of hammerhead activity in 500 microM Mn(2+), reducing the activity of the WT hammerhead by approximately 15-fold with an inhibition constant of K(i) = 30.9 +/- 2.3 microM. A residual 'slow' activity is observed in the presence of Co(NH(3))(6)(3+) and low concentrations of Mn(2+). Under these conditions, a single Mn(2+) ion remains bound and has a low-temperature EPR spectrum identical to that observed previously for the highest affinity Mn(2+) site in the hammerhead ribozyme in 1 M NaCl, tentatively attributed to the A9/G10.1 site [Morrissey, S. R. , Horton, T. E., and DeRose, V. J. (2000) J. Am. Chem. Soc. 122, 3473-3481]. Circular dichroism and thermal denaturation experiments also reveal structural effects that accompany the observed inhibition of cleavage and Mn(2+) displacement induced by addition of Co(NH(3))(6)(3+). Taken together, the data indicate that a high-affinity Co(NH(3))(6)(3+) site is responsible for significant inhibition accompanied by structural changes in the hammerhead ribozyme. In addition, the results support a model in which at least two types of metal sites, one of which requires inner-sphere coordination, support hammerhead activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.