Contents Summary1I.Introduction2II. Consequences of vegetation mortality3III.Global patterns of mortality3IV.Hypotheses on mechanisms of drought‐related mortality4V.Evidence for hypothesized mechanisms5VI.Implications of future climate on hypothesized mortality mechanisms13VII.Conclusions15Acknowledgements15References15 Summary Severe droughts have been associated with regional‐scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought‐induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought‐tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought‐induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought‐induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.
Deforestation in mid-to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes [1][2][3] . In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback 4,5 . This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead 5 . Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner 6,7 . Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 6 0.44 K (mean 6 one standard deviation) northwards of 456 N and 0.21 6 0.53 K southwards. Below 356 N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models 8 .The latitudinal gradient of land-use impact is evident in the comparison of the surface air temperature recorded at FLUXNET (www.fluxnet.ornl.gov) forest towers 9 (Supplementary Table 1 and Supplementary Fig. 1) and surface weather stations in North America (Fig. 1a). Here we use the surface stations as proxies for cleared land. In accordance with the requirement of the World Meteorological Organization, these stations are located in open grassy fields that have biophysical characteristics similar to those of open land, such as being covered by snow in northern latitudes in the winter 10 . Latitude accounts for 31% of the variations in the temperature difference DT between the forest sites and the adjacent open lands (number of site pairs n 5 37). The rate of change in DT with latitude is 20.070 6 0.010 K per degree (mean 6 one standard error, s.e., P , 0.005). At these sites, the annual net all-wave radiation R n
Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of droughtinduced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function
[1] Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included standreplacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m −2 y −1 ) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m −2 y −1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.
Land management and land-cover change have impacts of similar magnitude on surface temperature" (2014). Papers in Natural Resources. 554.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.