Biological indicators are useful tools for the assessment of ecosystem condition. Multi-metric and multi-taxa indicators may respond to a broader range of disturbances than simpler indicators, but their complexity can make them difficult to interpret, which is critical to indicator utility for ecosystem management. Floristic Quality Assessment (FQA) is an example of a biological assessment approach that has been widely tested for indicating freshwater wetland condition, but less attention has been given to clarifying the factors controlling its response. FQA quantifies the aggregate of vascular plant species tolerance to habitat degradation (conservatism), and model variants have incorporated species richness, abundance, and indigenity (native or non-native). To assess bias, we tested FQA variants in open-canopy freshwater wetlands against three independent reference measures, using practical vegetation sampling methods. FQA variants incorporating species richness did not correlate with our reference measures and were influenced by wetland size and hydrogeomorphic class. In contrast, FQA variants lacking measures of species richness responded linearly to reference measures quantifying individual and aggregate stresses, suggesting a broad response to cumulative degradation. FQA variants incorporating non-native species, and a variant additionally incorporating relative species abundance, improved performance over using only native species. We relate our empirical findings to ecological theory to clarify the functional properties and implications of the FQA variants. Our analysis indicates that (1) aggregate conservatism reliably declines with increased disturbance; (2) species richness has varying relationships with disturbance and increases with site area, confounding FQA response; and (3) non-native species signal human disturbance. We propose that incorporating species abundance can improve FQA site-level relevance with little extra sampling effort. Using our practical sampling methods, an FQA variant ignoring species richness and incorporating non-native species and relative species abundance can be logistically efficient, easily understood, and effective for wetland assessment.
Wading birds (i.e, Ardeidae: herons, egrets, and bitterns) are a guild of waterbirds that forage in coastal habitats which in the US and Europe are often located in close proximity to urban centers. However, the use of urban marine habitats may have consequences for bird populations, as birds can be subject to stress from increased levels of passive and active human disturbance. We examined the effects of human disturbance, available foraging habitat, and prey abundance on wading bird density and species richness at 17 urban coastal sites in Narragansett Bay, Rhode Island USA. The sites represented a gradient of immediately adjacent residential and commercial land use (e.g., 0.0-67.7% urban land use within a 30.5 m buffer of the sites) within an urban matrix (i.e., all sites were located within a suburban center with a population of about 85,000 people). Wading bird density (0.62±0.12 birds ha −1 ) and species richness (average 4.49±0.37 species across all sites) were not influenced by passive human disturbance as measured by the extent of urban land surrounding a site. However, wading bird density and species richness both decreased significantly as active disturbance (i.e., number of boats moored or docked upstream of the site) increased (r=−0.56, F=6.85, p=0.019 and r=−0.73, F=16.6, p=0.001, respectively). In addition, both density (r=0.72, F=16.2, p=0.001) and species richness (r=0.72, F=16.2, p=0.001) increased concomitantly with a prey index that combines the density of fish and invertebrates on which the birds feed with the amount of available shallow water foraging habitat at a site. Our results suggest that wading birds i) may not be negatively affected by urban land surrounding estuarine foraging areas in and of itself; and ii) may be Urban Ecosyst (
Heightened recognition of impacts to coastal salt marshes from sea-level rise has led to expanding interest in using thin-layer sediment placement (TLP) as an adaptation tool to enhance future marsh resilience. Building on successes and lessons learned from the Gulf and southeast U.S. coasts, projects are now underway in other regions, including New England where the effects of TLP on marsh ecosystems and processes are less clear. In this study, we report on early responses of a drowning, microtidal Rhode Island marsh (Ninigret Marsh, Charlestown, RI) to the application of a thick (10–48 cm) application of sandy dredged material and complimentary extensive adaptive management to quickly build elevation capital and enhance declining high marsh plant species. Physical changes occurred quickly. Elevation capital, rates of marsh elevation gain, and soil drainage all increased, while surface inundation, die-off areas, and surface ponding were greatly reduced. Much of the marsh revegetated within a few years, exhibiting aspects of classic successional processes leading to new expansive areas of high marsh species, although low marsh Spartina alterniflora recovered more slowly. Faunal communities, including nekton and birds, were largely unaffected by sediment placement. Overall, sediment placement provided Ninigret Marsh with an estimated 67–320 years of ambient elevation gain, increasing its resilience and likely long-term persistence. Project stakeholders intentionally aimed for the upper end of high marsh plant elevation growth ranges to build elevation capital and minimize maintenance costs, which also resulted in new migration corridors, providing pathways for future marsh expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.