To study the function of the first immunoglobulin (Ig)-like domain of the neural cell adhesion molecule (NCAM), it was produced as a recombinant fusion protein in a bacterial expression system and as a recombinant protein in a eukaryotic expression system of the yeast Pichia pastoris. For comparison, other NCAM domains were also produced as fusion proteins. By means of surface plasmon resonance analysis, it was shown that the first Ig-like NCAM domain binds the second Ig-like NCAM domain with a dissociation constant 5.5 +/- 1.6 x 10(-5) M. Furthermore, it was found that the first Ig-like domain binds heparin. It was also demonstrated that the second Ig-like NCAM domain binds heparin and that both domains bind collagen type I via heparin but not collagen type I directly.
The effect of the antiepileptic drug topiramate on Ca2+ uptake through (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate (AMPA) and kainate (KA) receptors was investigated in different cell culture systems consisting of neurons from the cerebral cortex, hippocampus, and cerebellum. Ca2+ influx was assayed using a fluorescent Ca2+ chelator to monitor changes in the intracellular Ca2+ concentration or cobalt staining to assess the effect of topiramate on Ca2+-permeable AMPA/KA receptors. In all types of neuronal cultures studied, AMPA and KA were found to elicit an influx of Ca2+ in a subset of the neuronal population. Topiramate, at concentrations of 30 and 100 microM, inhibited Ca2+ influx by up to 60%. Modulation of AMPA and KA-evoked Ca2+ influx may contribute to both the antiepileptic and neuroprotective properties of topiramate.
The role of taurine in the process of neuronal migration was studied in a microwell cell culture system. Immunocytochemical analysis of the cellular composition of this culture system revealed the presence of the astrocytic marker GFAP in some structures such as the aggregates of neuronal bodies and in those cables used for migration, resembling what is described in vivo. The neuronal marker gamma-enolase stained practically all structures, including the aggregates and all cables. The intracellular taurine concentration was reduced by 60% in mouse cerebellar granule cells treated with a blocker of taurine transport, guanidinoethane sulfonate (GES). Under these conditions cell migration was markedly reduced to approximately 50% of that in untreated cultures. Both, taurine depletion and impairment of cell migration induced by GES were prevented by adding taurine to the culture medium. Taurine deficiency similarly affected different morphological parameters such as the number of cables suitable for neuronal migration as well as the number of migrating neurons. The number of aggregates of neuronal bodies was significantly increased, by about 30%, as a consequence of the reduced migration. Taurine alone did not exert any effect on the parameters evaluated. GES treatment of granule cells did not affect mitochondrial metabolism or K(+)-stimulated Ca(2+)-dependent [3H]-D-aspartate release. This suggests that the described effects of taurine deficiency were not due to an alteration of neuronal viability and that the action of GES was not simply due to unspecific and deleterious effects. These results are in agreement with those obtained in in vivo studies. This approach represents a useful model to investigate the role played by taurine in the process of neuronal migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.