Supported Pt nanoparticles are used extensively in chemical processes, including for fuel cells, fuels, pollution control and hydrogenation reactions. Atomic-level deactivation mechanisms play a critical role in the loss of performance. In this original research paper, we introduce real-time in-situ visualization and quantitative analysis of dynamic atom-by-atom sintering and stability of model Pt nanoparticles on a carbon support, under controlled chemical reaction conditions of temperature and continuously flowing gas. We use a novel environmental scanning transmission electron microscope with single-atom resolution, to understand the mechanisms. Our results track the areal density of dynamic single atoms on the support between nanoparticles and attached to them; both as migrating species in performance degradation and as potential new independent active species. We demonstrate that the decay of smaller nanoparticles is initiated by a local lack of single atoms; while a post decay increase in single-atom density suggests anchoring sites on the substrate before aggregation to larger particles. The analyses reveal a relationship between the density and mobility of single atoms, particle sizes and their nature in the immediate neighbourhood. The results are combined with practical catalysts important in technological processes. The findings illustrate the complex nature of sintering and deactivation. They are used to generate new fundamental insights into nanoparticle sintering dynamics at the single-atom level, important in the development of efficient supported nanoparticle systems for improved chemical processes and novel single-atom catalysis. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function’.
The first dynamic atomic resolution environmental scanning transmission electron microscope (ESTEM) study of the nanoparticle sintering of a model Cu system is reported. ESTEM confers the advantage of a Z‐contrast dependence in industrially representative conditions to provide enhanced visibility of sub‐nanometer particles when compared with TEM. The importance of this is demonstrated by the significant enhancement in the Ostwald ripening rate of model Cu nanoparticles in the presence of 3 Pa hydrogen, an effect that is independent of the substrates studied. Temperatures of 400–550 °C are shown to switch the operating regime of the rate‐limiting mechanism. Cu catalysts are used for methanol synthesis and hydrocarbon‐conversion processes for fuel cells, and the importance of observing these catalysts in their working states is demonstrated. Unique ESTEM observations of Ostwald ripening are combined with kinetic models to improve the technical understanding of catalyst deactivation mechanisms.
Ecological risk assessment is carried out for chemicals such as pesticides before they are released into the environment. Such risk assessment currently relies on summary statistics gathered in standardized laboratory studies. However, these statistics extract only limited information and depend on duration of exposure. Their extrapolation to realistic ecological scenarios is inherently limited. Mechanistic effect models simulate the processes underlying toxicity and so have the potential to overcome these issues. Toxicokinetic–toxicodynamic (TK–TD) models operate at the individual level, predicting the internal concentration of a chemical over time and the stress it places on an organism. TK–TD models are particularly suited to addressing the difference in exposure patterns between laboratory (constant) and field (variable) scenarios. So far, few studies have sought to predict sublethal effects of pesticide exposure to wild mammals in the field, even though such effects are of particular interest with respect to longer term exposure. We developed a TK–TD model based on the dynamic energy budget (DEB) theory, which can be parametrized and tested solely using standard regulatory studies. We demonstrate that this approach can be used effectively to predict toxic effects on the body weight of rats over time. Model predictions separate the impacts of feeding avoidance and toxic action, highlighting which was the primary driver of effects on growth. Such information is relevant to the ecological risk posed by a compound because in the environment alternative food sources may or may not be available to focal species. While this study focused on a single end point, growth, this approach could be expanded to include reproductive output. The framework developed is simple to use and could be of great utility for ecological and toxicological research as well as to risk assessors in industry and regulatory agencies.
Progress is reported in analytical in situ environmental scanning transmission electron microscopy (ESTEM) for visualizing and analysing in real-time dynamic gas–solid catalyst reactions at the single-atom level under controlled reaction conditions of gas environment and temperature. The recent development of the ESTEM advances the capability of the established ETEM with the detection of fundamental single atoms, and the associated atomic structure of selected solid-state heterogeneous catalysts, in catalytic reactions in their working state. The new data provide improved understanding of dynamic atomic processes and reaction mechanisms, in activity and deactivation, at the fundamental level; and in the chemistry underpinning important technological processes. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes, reductions in energy requirements and better management of environmental waste. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.