In most organisms, the pyruvate dehydrogenase complex catalyzes the pivotal irreversible reaction that leads to the consumption of glucose in the aerobic, energy-generating pathways. A combination of biochemical and molecular biology studies have greatly expanded our understanding of the overall structural organization of this multicomponent system, delineated the locations and elucidated the functions of structural domains of the catalytic components, and revealed significant evolutionary changes. Important to this progress was the deduction of the primary amino acid sequences from cDNA clones for each of the catalytic components from several species. The greatest detail is available for the FAD-containing dihydrolipoamide dehydrogenase component, which is the only component for which tertiary structure information has recently emerged. For the dihydrolipoamide acetyltransferase core component, a similar but species-variable multidomain structure is established that is responsible for the distinct architectures of the inner cores, the peripheral binding of the other components, and the conveyance of reaction intermediates between distantly separated active sites. A second lipoyl-bearing component, protein X, has been shown to play a critical role in the organization and function of the complex from many higher organisms. Although much is known about the means of effector modulation of mammalian complex activity, identification of the signal eliciting its regulation by insulin still poses an exciting challenge.
The fraction of pyruvate dehydrogenase complex (PDC) in the active form is reduced by the activities of dedicated PD kinase isozymes (PDK1, PDK2, PDK3 and PDK4). Via binding to the inner lipoyl domain (L2) of the dihydrolipoyl acetyltransferase (E2 60mer), PDK rapidly access their E2-bound PD substrate. The E2-enhanced activity of the widely distributed PDK2 is limited by dissociation of ADP from its C-terminal catalytic domain, and this is further slowed by pyruvate binding to the N-terminal regulatory (R) domain. Via the reverse of the PDC reaction, NADH and acetyl-CoA reductively acetylate lipoyl group of L2, which binds to the R domain and stimulates PDK2 activity by speeding up ADP dissociation. Activation of PDC by synthetic PDK inhibitors binding at the pyruvate or lipoyl binding sites decreased damage during heart ischemia and lowered blood glucose in insulin-resistant animals. PDC activation also triggers apoptosis in cancer cells that selectively convert glucose to lactate.
The immunodominant antimitochondrial antibody response in patients with primary biliary cirrhosis (PBC) is directed against the E2 component of the pyruvate dehydrogenase complex (PDC-E2). Based on our earlier observations regarding peripheral blood mononuclear cell (PBMC) T cell epitopes, we reasoned that a comparative analysis of the precursor frequencies of PDC-E2 163-176-specific T cells isolated from PBMC, regional hepatic lymph nodes, and from the liver of PBC patients would provide insight regarding the role of T cells in PBC. Results showed a diseasespecific 100-150-fold increase in the precursor frequency of PDC-E2 163-176-specific T cells in the hilar lymph nodes and liver when compared with PBMC from PBC patients. Interestingly, autoreactive T cells and autoantibodies from PBC patients both recognize the same dominant epitope. In addition, we demonstrated cross-reactivity of PDC-E2 peptide 163-176-specific T cell clones with PDC-E2 peptide 36-49 and OGDC-E2 peptide 100-113 thereby identifying a common T cell epitope "motif" ExETDK. The peptide 163-176-specific T cell clones also reacted with purified native PDC-E2, suggesting that this epitope is not a cryptic determinant. These data provide evidence for a major role for PDC-E2 peptide 163-176 and/or peptides bearing a similar motif in the pathogenesis of PBC. ( J. Clin. Invest. 1998. 102: 1831-1840 . )
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.